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Abstract 

Projecting the effects of proposed policy reforms is challenging because no outcome data exist for 
regulations that governments have not yet implemented. We propose an ex ante deep learning 
framework that can project effects of proposed reforms by mapping outcomes observed under past 
regulations onto the legal criteria of proposed future policies (i.e., by “relabeling”). We apply this 
framework to study changes in jurisdiction of the US Clean Water Act (CWA). We compare our 
ex ante deep learning projection of jurisdiction under the Supreme Court’s Sackett decision against 
widely used projections from domain experts. Ex ante machine learning generates exceptional 
performance improvements over the leading domain expert model that the US Environmental 
Protection Agency currently uses, with 65 times more accurate identification of jurisdictional sites. 
We also develop an ex post deep learning model trained with data after policy implementation. Ex 
post deep learning performs best. Sackett deregulates one-third of all previously regulated US 
waters, particularly floodplains and pristine fish habitats, totaling 700,000 deregulated stream 
miles and 17 million deregulated wetland acres. Deep learning can effectively project 
consequences of far-reaching regulatory reforms before they are implemented, when projections 
are both most uncertain and most useful. 

 

Significance Statement 
 
Evaluating proposed regulations before implementation is essential for effective policymaking. 
Analysts, however, cannot observe how untested policies affect outcomes, which makes it 
challenging to produce accurate evaluations of such policies. This paper introduces a deep learning 
framework that addresses this challenge by modifying outcomes observed under past regulations 
in ways that reflect proposed regulations. This strategy allows projections of the real-world 
impacts of a potential policy change before it is implemented. We use this approach to predict the 
effects of the Supreme Court’s 2023 Sackett decision, which restricts jurisdiction of the US Clean 
Water Act, using only information available before policy implementation. Ex ante deep learning 
dramatically outperforms widely used models created by geophysical scientists in identifying both 
regulated and unregulated waters. Separately, we also provide the first ex post national assessment 
of Sackett, “one of the most impactful environmental decisions in the Court’s history,” and the 
current Clean Water Act rule. Sackett removes federal protection from roughly one-third of 
previously regulated streams and wetlands, including areas with important ecological functions. 
These results demonstrate that deep learning can dramatically improve analysis of policies that are 
proposed but not yet implemented.



 

Evaluating proposed policy reforms is a critical task. Such evaluations can shape how 1 

policymakers choose between alternative policy proposals and how firms, citizen groups, and other 2 

stakeholders adapt to policy change. Government, academic, and private sector analysts generate 3 

numerous such evaluations annually. The stakes are high—regulatory reforms can generate 4 

hundreds of billions of dollars in annual benefits, though also enormous costs (1). 5 

 6 

Projecting effects of proposed policy reforms is challenging because such forecasts are made 7 

before a policy is implemented, when a policy’s impact is most uncertain. Because no outcome 8 

data exist for proposed policies, forecasting their effects typically relies on domain experts like 9 

scientists, engineers, and economists. The challenge of evaluating proposed policies when the 10 

outcomes are not yet observed has led to the concern that the existing evaluation system is “broken, 11 

… largely based on faith, rather than evidence” (2).  12 

 13 

We develop a methodology that provides one of the first deep learning projections of a proposed 14 

regulation’s effects. Analysts increasingly use deep learning to interpret existing energy, 15 

environmental, financial, health, judicial, and labor market regulations ex post (3–6), though 16 

largely not to evaluate proposed reforms. To address the absence of data on outcomes under 17 

proposed policies, we take data on outcomes under past policies and change (“relabel”) these 18 

outcomes in ways that characterize proposed rules. We then train a deep learning algorithm that 19 

predicts regulation under the proposed rules, as captured by the relabeled outcomes. We compare 20 

performance of this ex ante deep learning projection against published ex ante projections from 21 

domain experts that rely on geophysical models. Separately, we develop an ex post deep learning 22 

model to describe a policy’s effects after it is implemented and outcomes are observed, so that we 23 

can compare ex ante against ex post analysis.  24 

We apply this methodology to study recent and ongoing reforms to the 1972 US Clean Water Act 25 

(CWA), the cornerstone of federal water pollution control. The CWA restricts water pollution 26 

discharged to the “Waters of the United States” (WOTUS) but does not enumerate which streams 27 

and wetlands this phrase covers. To determine whether the CWA protects a site (e.g., a parcel 28 

where a developer hopes to build a factory), a developer can ask the Army Corps of Engineers 29 

(USACE) to evaluate the site and issue an Approved Jurisdictional Determination (AJD), 30 

indicating whether the CWA regulates the site. AJDs are the only legally binding decisions 31 

describing CWA jurisdiction at the site level and therefore provide the natural outcome for our 32 

empirical analysis. For jurisdictional sites, a developer may request a USACE wetland permit 33 

describing conditions required to comply with the CWA.  34 

Many stakeholders argue that CWA jurisdiction and its recent reforms are costly and uncertain. 35 

Microsoft’s President summarized these wetland permits in congressional testimony as the 36 

“number 1 challenge” in data center development (7). A legal expert described courts modifying 37 

the CWA as sometimes “flying blind” (8). Media describe the regulatory landscape as “hazy” and 38 

“chaos” (9). Our analysis highlights the potential of ex ante deep learning projections to reduce 39 

the uncertainty associated with large policy reforms in this setting. Our analysis also responds to 40 

a call by USEPA and USACE (10) for evidence on whether machine learning could provide an 41 

“appropriate alternative” to geophysical models as a tool for governments to project effects of 42 

proposed regulations. 43 



 

In addition to implementing ex ante deep learning, we use 200,000 AJDs to develop and train the 44 

ex post Clean Water Act Analysis of Regulation (CLEAR) deep learning model. This provides the 45 

first ex post national quantitative analysis of jurisdictional coverage under the Supreme Court’s 46 

Sackett ruling, “one of the most impactful environmental decisions in the Court’s history” (11).  47 

Compared to algorithmic analysis of earlier CWA regulation (6), our deep learning models study 48 

new questions including projecting effects of proposed regulations, analyzing Sackett, and 49 

studying floodplains, fish habitat quality, and other ecosystem services. Our deep learning models 50 

also implement methodological advances including the generation and use of synthetic training 51 

data, fine tuning models on each CWA rule, fusing image and tabular data, calibrating model 52 

scores, and choosing optimal decision thresholds (SI Appendix, Sections A.1, A.2, A.3, and A.7).  53 

CWA Background 54 

Over the past decade, CWA jurisdiction has changed repeatedly due to alternating administrative 55 

rules and Supreme Court decisions. “Regulatory ping pong” (12, 13) under the CWA—frequent 56 

and large changes in rules between administrations and courts—includes six rules in the last 57 

decade, plus other rules under discussion or implementation (14). In the Supreme Court’s 2006 58 

Rapanos case, Justice Kennedy’s concurring opinion found that to be jurisdictional under the 59 

CWA, a stream, wetland, or other water body required a “significant nexus,” i.e., a biological, 60 

physical, or chemical connection to traditional navigable waters. The 2016 Clean Water Rule 61 

(CWR) primarily clarified Rapanos; USEPA and USACE repealed the CWR in 2019. The 2020 62 

Navigable Waters Protection Rule (NWPR) restricted jurisdiction to relatively permanent waters 63 

with a continuous surface water connection to traditional navigable waters. NWPR effectively 64 

excluded ephemeral streams and isolated wetlands. The 2023 Rule, litigated then enjoined in some 65 

areas, closely resembled Rapanos. Sackett required jurisdictional waters to have a continuous 66 

surface water connection to traditional navigable waters and excluded certain wetlands separated 67 

from navigable waters by barriers. Due to litigation, in September 2023, USEPA implemented two 68 

versions of Sackett in different states, which our analysis combines given their similarity. In March 69 

2025, USEPA and USACE issued revised Sackett guidance, prompting extensive debate, including 70 

46,042 public comments (15). In November 2025, USEPA and USACE proposed a rule to further 71 

limit CWA jurisdiction. The PERMIT Act, which the US House passed in December 2025 with 72 

bipartisan support, rewrites the CWA to resemble Sackett, though further excludes groundwater 73 

(16). 74 

Predictive Models of CWA Jurisdiction 75 

We consider a series of models predicting which water resources each CWA rule regulates. As a 76 

benchmark, we compare all models’ performance against the naïve prediction that no sites are 77 

jurisdictional.  78 

As in climate science, a “projection” considers an assumed future policy scenario, such as a 79 

proposed CWA rule, and quantitatively describes its effects. As in machine learning, a “prediction” 80 

reflects a model’s assessment of what a rule regulates (17).  81 

Geophysical Models. We consider two geophysical models that are widely used by domain 82 

experts, which both assume that water resources with certain attributes in existing stream and 83 

wetland maps define CWA jurisdiction. Domain experts choose which characteristics in the maps 84 



 

define jurisdiction. USEPA and USACE once described this type of geophysical model as “highly 85 

unreliable … based on stream and wetland datasets that were not created for regulatory purposes 86 

and have significant limitations…” (18). Nonetheless, such geophysical models are prominent in 87 

research (19–21), underpin prominent Supreme Court briefs (22), guide current USEPA and 88 

USACE planning (23), and receive extensive media attention (24–26). SI Appendix Section A.1 89 

provides details. 90 

Model 1 (Wetness Geophysical Model). The “Wetness” model (19) assumes that non-91 

tidal wetlands that the National Wetlands Inventory (NWI) lists as not inundated a certain 92 

share of the year lose jurisdiction under Sackett.  93 

Model 2 (Connected Geophysical Model). The “Connected” model (20, 21) assumes that 94 

wetlands in the NWI that intersect a perennial or intermittent stream in the National 95 

Hydrography Dataset (NHD) are jurisdictional.  96 

NWI and NHD are leading national maps of wetlands and streams, though both have well-97 

documented errors of inclusion and exclusion (18, 27–29). 98 

Deep Learning Models. We also consider approaches that take AJDs from past CWA rules and 99 

train a deep learning model to predict their jurisdictional status. We then use the trained algorithm 100 

to predict jurisdiction at any US location under each CWA rule.  101 

Model 3 (Ex Ante Deep Learning Model). Our ex ante deep learning model predicts 102 

jurisdictional outcomes under Sackett using only data and knowledge available before 103 

Sackett implementation. For model training, we take AJDs from NWPR, a rule preceding 104 

Sackett, and change (i.e., “relabel”) the outcomes from jurisdictional to non-jurisdictional 105 

for the two categories of waters which lost protection between NWPR and Sackett— 106 

wetlands separated from jurisdictional waters by artificial structures or natural features (SI 107 

Appendix, Table S2 and Section A.1). We identify these two categories of waters by 108 

reading the Sackett majority opinion.  We formalized the relabeling in a June 2023 external 109 

email and presentation, before USEPA announced its Sackett rule or USACE began 110 

implementing it.  111 

Model 4 (Ex Post Deep Learning Model). Our ex post deep learning model predicts 112 

jurisdictional outcomes under each CWA rule – Sackett, NWPR, Rapanos, and CWR – by 113 

training on AJDs from all rules. 114 

Both the ex ante and ex post deep learning models begin from a common deep learning 115 

framework—a ResNet-18 backbone (30) pre-trained on ImageNet (31). The input layers 116 

we use to predict the AJDs include color and near infrared aerial imagery, water resource 117 

maps, elevation data, local climate and weather information, soil characteristics, land cover 118 

maps, and ecoregions (SI Appendix, Section A.5 and Table S15). We also include tabular 119 

data on location’s state, USACE district, distance to USACE headquarters, and on the 120 

CWA rule under which the location is evaluated (SI Appendix, Section A.2). For each 121 

model, we pre-train on AJDs describing many CWA rules and then fine-tune the algorithm 122 

on only the CWA rule of interest (SI Appendix, Section A.1). 123 

Measuring Model Performance 124 



 

Deep learning models output a raw model score for each site in [0,1]. We use isotonic regression 125 

to translate this raw score into a calibrated jurisdictional probability, which represents the model’s 126 

estimate of the probability that the site is jurisdictional (SI Appendix, Section A.7).  127 

Generating binary classifications (“jurisdictional” versus “not jurisdictional”) from deep learning 128 

models requires a decision threshold; deep learning models predict that sites with calibrated 129 

probabilities above this threshold are jurisdictional and sites with probabilities below this threshold 130 

are not jurisdictional. Analysis could default to a decision threshold of 0.5, which would imply 131 

that any site with a calibrated probability score above 0.5 is predicted to be jurisdictional. However, 132 

a benefit of utilizing a probabilistic model such as deep learning to create projections is the 133 

flexibility to choose the threshold that maximizes model performance on a given performance 134 

metric. For example, one threshold may minimize mean absolute error across the US, while 135 

another threshold may maximize accuracy.  136 

We divide the AJDs into three spatially disjoint groups for model training, development, and 137 

evaluation. The deep learning models use the training set (80% of AJDs) to learn patterns in the 138 

data. We use the validation set (10% of AJDs) to tune model parameters. For all models, we use a 139 

held-out test set (10% of sample) to calculate the model performance statistics this paper reports. 140 

Our use of the test set helps avoid overfitting the model to the validation set and thereby inflating 141 

performance metrics (SI Appendix, Section A.2). The data have class imbalance, since 80.3% of 142 

Sackett AJDs are non-jurisdictional. A naïve benchmark that predicts zero jurisdiction anywhere 143 

therefore achieves accuracy of 80.3%. 144 

While predictive performance can be measured using a range, we focus on the widely-used area 145 

under the receiver operating characteristic curve (AUC) (32). The AUC is robust to class 146 

imbalance because it evaluates a model’s ability to rank positive cases above negative cases, 147 

thereby using the full ranking of predicted jurisdictional scores rather than measuring performance 148 

at one chosen decision threshold. This matters because the use of a decision threshold treats sites 149 

with the same binary prediction identically, even if the sites have different calibrated jurisdictional 150 

probabilities (e.g., if one site has 65% probability of jurisdiction and the other has 99%, and both 151 

exceed the binary decision threshold), though a user (e.g., a developer or regulator) may see these 152 

predictions differently. 153 

We also report other model performance metrics besides the AUC that rely on binary decision 154 

thresholds. We report precision and recall, given concern with false positives and false negatives, 155 

as well as their harmonic mean (the F1 Score); accuracy, given its simple interpretation and 156 

common use; and mean absolute error (MAE) nationally, given usefulness for stakeholders. Fig. 157 

1 and SI Appendix, Table S1, define several of these metrics. As with other model parameters, we 158 

choose binary decision thresholds using the validation set (SI Appendix, Section A.7).  159 

The original analysis developing the Wetness geophysical model (19) has two characteristics 160 

worth discussing. First, it projects effects of eight scenarios based on different assumptions about 161 

the share of the year a wetland must be inundated to be jurisdictional, but it does not distinguish 162 

which of the eight scenarios will be enacted. The Wetness model predicts that between 19% and 163 

91% of non-tidal wetlands lose protection under Sackett, a range wide enough to be “bogged down 164 

in mystery” (33). The wetness scenarios range widely because the results depend on assumptions 165 

about how USACE interprets Sackett. Our analysis of the Wetness model focuses on the median 166 



 

scenario for simplicity, though does report results for all wetness scenarios. The median scenario 167 

has the best performance in the validation set among all wetness scenarios. 168 

Second, the original Wetness model (19) generates predictions for a narrow subset of US waters—169 

non-vegetated, non-anthropogenically influenced, shallow water non-tidal wetlands connected to 170 

jurisdictional streams and rivers. We find that these areas only account for 1.2% of Sackett AJDs. 171 

This restricted availability of the Wetness geophysical model limits its applicability nationally. We 172 

therefore also report results for three separate samples of Sackett AJDs (SI Appendix, Section A.1).  173 

Model Results  174 

A naïve benchmark, which assumes that no sites are jurisdictional, has poor model performance, 175 

with AUC of 0.500 and F1 Score of 0.000 (Fig. 1 and SI Appendix, Table S1A).  176 

The Wetness geophysical model does not uniformly improve model performance over this naïve 177 

benchmark (Fig. 1 and SI Appendix, Table S1B). For example, the Wetness model has an AUC of 178 

0.498, just below the naïve benchmark. The wetness model only correctly identifies 1 in 250 sites 179 

that USACE classifies as jurisdictional (i.e., it has recall of 0.004). In part this happens because 180 

wetness categories have a noisy relationship to jurisdiction and only focus on non-tidal wetlands 181 

(SI Appendix, Fig. S4).  182 

The Connected geophysical model improves slightly, with an AUC of 0.512 (Fig. 1 and SI 183 

Appendix, Table S1B). The Connected model improves performance for the sites it predicts as 184 

jurisdictional (i.e., it has high precision). It misses many waters that USACE identifies as 185 

jurisdictional (i.e., it has low recall). The Connected model performs somewhat poorly because 186 

many jurisdictional AJDs are not in national maps of streams or wetlands (NHD or NWI), and 187 

because the Connected model’s geophysical criteria incorrectly exclude many jurisdictional 188 

streams and wetlands.  189 

Ex ante deep learning substantially outperforms the geophysical models on most performance 190 

metrics (Fig. 1 and SI Appendix, Table S1C). Ex ante deep learning has an AUC of 0.693, 0.181 191 

higher than either geophysical model. This represents an enormous performance improvement by 192 

standards common in applied machine learning, where even AUC improvements of 0.05 are 193 

considered to be substantial (34).  In all eight scenarios the Wetness model examines, ex ante and 194 

ex post deep learning outperform the Wetness model in AUC and most other performance metrics 195 

(SI Appendix, Table S4). Compared to the Wetness model, ex ante deep learning is sixty-five times 196 

more likely to identify jurisdictional sites (higher recall) and has forty-seven times better 197 

performance on jurisdictional sites (F1 score).  198 

Ex post deep learning has the strongest performance of all models (Fig. 1 and SI Appendix, Table 199 

S1D). It substantially outperforms both geophysical models on all metrics. It also outperforms ex 200 

ante deep learning on some but not all metrics, and by smaller margins. Ex ante and ex post deep 201 

learning have similar AUC. By this important metric, access to post-implementation data does not 202 

materially improve performance relative to the ex ante model. The national MAE of 0.001 from 203 

ex post deep learning means it almost perfectly projects the mean national jurisdiction of Sackett, 204 

while other models have MAE of 0.07 to 0.19, indicating they have some bias in projecting overall 205 

regulatory stringency of Sackett.  Ex post deep learning achieves AUC above 0.80 on the other 206 



 

CWA rules (NWPR, CWR, and Rapanos), exceeding its levels for Sackett (SI Appendix, Table 207 

S5A).  208 

Describing Jurisdiction: Sackett 209 

To understand patterns of CWA jurisdiction, we calculate each model’s prediction at 4 million 210 

randomly chosen points across the contiguous US. This subsection focuses on predictions from 211 

the ex post deep learning model, since it has the strongest performance, for these 4 million points 212 

and subsets of interest. We compare against the ex ante geophysical and deep learning models to 213 

clarify their differences in substantive conclusions.  214 

The ex post deep learning model calculates that Sackett regulates 11.5% of the contiguous US area, 215 

including 25% of stream miles and 28% of wetland acres (Fig. 2 and SI Appendix, Table S3). 216 

Sackett deregulates floodplains and other areas with important ecosystem services, many of which 217 

prior rules regulated (SI Appendix, Fig. S2 and Tables S7E and S9). 218 

Geophysical models rely on stream and wetland maps like NHD and NWI to make predictions. Ex 219 

post deep learning indicates that 11.3% of areas not in NHD and 8.7% of areas not in NWI’s 220 

palustrine wetlands are jurisdictional (SI Appendix, Table S3B and C). This further underscores 221 

the limits of geophysical models, which substantially rely on one or two stream and wetland maps 222 

like NHD and NWI without directly using AJDs.  223 

Compared to ex post deep learning, geophysical models substantially underestimate CWA 224 

jurisdiction, while ex ante deep learning is much closer to the ex post estimates (Fig. 2, SI 225 

Appendix, Table S3). Geophysical models predict that Sackett regulates less than 3 percent of the 226 

US, though alternative wetness scenarios range widely (SI Appendix, Table S6). The Connected 227 

geophysical model predicts that the CWA regulates only 0.1% of the parts of the US that are not 228 

in NWI or NHD, so it performs especially poorly in these areas. The ex ante deep learning model 229 

projects that Sackett regulates 13.4% of the contiguous US, much closer to the ex post 11.5%. 230 

Similarly, ex post deep learning projects that the CWA protects 27.9% of wetlands, which is in the 231 

ballpark of the ex ante deep learning projection of 31.4%, though nowhere near the geophysical 232 

model projections of 10.9% to 16.5% (SI Appendix, Table S3C).  233 

Describing Jurisdiction: All CWA Rules 234 

Ex post deep learning shows that Sackett regulates fewer waters than any previous rule (Fig. 3 and 235 

SI Appendix, Table S7). Rapanos regulates 46% of stream miles, 41% of wetland acres, and 18% 236 

of contiguous US area. Compared to Rapanos, Sackett deregulates one-third of regulated water 237 

resources and 28% of regulated floodplains.* This amounts to over 700,000 deregulated stream 238 

miles and 19 million deregulated wetland acres. Sackett deregulates the most wetland acres in 239 

Florida and Michigan (SI Appendix, Table S8). Sackett also deregulates 28% of regulated 240 

floodplains, potentially encouraging development in these areas, which is important given rising 241 

national flood damages and growing extreme weather risk due to climate change. 242 

 
* Our estimates of regulation under previous rules such as NWPR exceed prior algorithmic estimates (6), partly 
since we average calibrated probabilities while prior work averages binary jurisdictional predictions (SI Appendix, 
Section B.2). Calibrated probabilities represent the probability of jurisdiction. Thus, averaging these probabilities as 
we do here, rather than their rounded values as in (6), best describes the share of area that is jurisdictional.  



 

NWPR and Sackett both have a basis in Justice Scalia’s Rapanos opinion, but the differences are 243 

so far largely unquantified. Ex post deep learning finds that Sackett regulates systematically less 244 

than NWPR, including deregulating a fifth of wetland acres protected under NWPR (Fig. 3 and SI 245 

Appendix, Table S7).  246 

Fig. 3 graphs the “regulatory ping pong” of recent CWA regulation. Jurisdiction fluctuated 247 

between 2018 and 2020 due to differences between CWR and Rapanos. The share of streams and 248 

wetlands regulated fell by about 15% in 2020 under NWPR and returned to broader jurisdiction in 249 

late 2021. Jurisdiction declined by around a third in late 2023, under Sackett.   250 

Maps reveal enormous spatial differences across rules (Fig. 4 and SI Appendix, Fig. S5). Ex post 251 

deep learning finds that compared to Rapanos, Sackett deregulates isolated wetlands in coastal and 252 

inland areas, ephemeral streams across the arid West, and streams and wetlands in almost every 253 

state (SI Appendix, Table S8). Compared to NWPR, Sackett primarily deregulates wetlands along 254 

the East Coast and in some areas of the Pacific Northwest, but changes jurisdiction little across the 255 

Arid West (SI Appendix, Fig. S5C). Ex ante and ex post deep learning models predict qualitatively 256 

similar spatial patterns. 257 

Case studies highlight local differences across rules and predictions (SI Appendix Fig. S1, S6). In 258 

wetland-abundant regions like Michigan’s Upper Peninsula and the North Carolina coast, Sackett 259 

regulates fewer isolated wetlands and small water bodies than Rapanos. In drier regions, Sackett 260 

and NWPR deregulate ephemeral streams. The Wetness geophysical model has no predictions in 261 

most of these areas, given its restriction to a narrow set of non-tidal wetlands. Ex ante deep learning 262 

captures spatial patterns in the ex post data much more effectively than the geophysical models 263 

do. 264 

Wetlands support ecosystem services including flood mitigation and water filtration, and support 265 

CWA goals of decreasing water pollution and improving water-based recreation, including fishing. 266 

Sackett deregulates areas important to all of these ecological functions (SI Appendix, Fig. S2, 267 

Table S9). For example, in areas used for drinking water sources, Sackett has 10% lower 268 

probability of regulation than Rapanos. In “impaired” areas where a large share of waters is too 269 

polluted to support intended uses, Sackett also has 10% lower probability of regulation than 270 

Rapanos.  271 

Discussion 272 

Many groups may value accurate projections of the effects of proposed environmental regulations. 273 

Developers and industrial firms can use such projections to improve regulatory compliance and 274 

guide site and investment decisions. Staff at government agencies like USEPA and USACE, the 275 

Congressional Budget Office, and state Wetland Boards can use such projections to help evaluate 276 

proposed regulations and provide a decision support tool for implementing existing regulations. 277 

Judges can use such projections to understand consequences of alternative interpretations of 278 

statutes. Environmental restoration firms can use such projections to evaluate where investment in 279 

restoring natural resources (e.g., wetland mitigation banks) is most needed. Environmental 280 

organizations can use such projections to guide public discussion of prospective environmental 281 

reforms.  282 



 

Ex ante deep learning can provide high-quality projections to support such needs. Ex ante deep 283 

learning helps address a critical problem of policy analysis—projecting effects of proposed 284 

policies before implementation—a time period when analysis is both most uncertain and most 285 

useful.  286 

Our analysis of recent CWA reforms finds that ex ante deep learning far outperforms expert 287 

geophysical projections on most measures of model performance. Expert geophysical projections 288 

provide marginal improvements over a naïve benchmark. Ex post deep learning has the strongest 289 

performance and documents enormous decreases in wetland and stream jurisdiction under Sackett 290 

compared to all previous CWA rules. 291 

Future work can further clarify the potential contribution of deep learning to projecting effects of 292 

other reforms. Recent or ongoing reforms to wetland protection in Chile, China, the EU, Japan, 293 

and elsewhere may provide opportunities for related analysis (35–40). Proposed reforms to the 294 

National Environmental Policy Act, Clean Air Act, Safe Drinking Water Act, and other landmark 295 

environmental US statutes may also benefit from deep learning projections. The frequency of 296 

regulatory reforms in financial, labor market, and other non-environmental domains provides 297 

many opportunities to explore related approaches. 298 

In any setting, the relative strength of ex ante deep learning versus domain experts may depend on 299 

the extent to which relabeling effectively characterizes the policy reform.  More precise 300 

descriptions of proposed reforms, and descriptions of reforms which overlap with characteristics 301 

of prior policies, may improve the performance of ex ante deep learning. A regulation’s impacts 302 

ultimately depend on agencies’ capacity, agencies’ evolving interpretations of statutes, agencies’ 303 

willingness to enforce policy changes, and regulated entities’ compliance. One interpretation is 304 

that in our setting, regulatory agencies implement policy reforms in a way that can be effectively 305 

projected using a flexible interpretation of past policies.  306 

Another intriguing question for future work involves potential combinations of ex ante deep 307 

learning with geophysical frameworks. Some prospective reforms could benefit from taking 308 

observed outcomes under past rules, using domain expertise or geophysical models to determine 309 

which outcomes within certain categories change under a proposed rule, then training an ex ante 310 

deep learning model on the resulting relabeled data. For example, USEPA and USACE released a 311 

draft CWA rule in November 2025. USEPA and USACE propose using geophysical models to 312 

project effects of this rule and dismiss the use of AJDs. Our results raise the possibility that using 313 

geophysical models to relabel AJDs from past rules and training an ex ante deep learning model 314 

to describe relabeled AJDs could substantially outperform the use of geophysical models alone. 315 

While we project effects of regulation as implemented, a related and important question asks 316 

whether agency interpretation of a regulation fits with the intent of a law as written. This represents 317 

another area almost exclusively analyzed by domain experts, and where the potential contribution 318 

of deep learning remains unknown. “Human-in-the-loop” frameworks, where domain experts and 319 

algorithms collaboratively improve an evaluation system’s capabilities, may also provide a useful 320 

avenue to compare the intent of a law as written against an agency’s interpretation of it. 321 
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Fig. 1: Geophysical models have similar or somewhat better performance than the naïve 
benchmark, ex ante deep learning does much better, and ex post deep learning has the 
strongest model performance. 

Each bar describes the performance of a separate model for Sackett jurisdiction, according to the 
performance metric listed along the x-axis. The naïve benchmark (white bar) predicts that no 
location is jurisdictional. The Connected geophysical model (light blue bar) defines points as 
jurisdictional if they fall within a potentially regulated National Wetlands Inventory (NWI) polygon 
that connects with a perennial or intermittent National Hydrography Dataset (NHD) flowline. The 
Wetness geophysical model (medium blue bar) describes the median Wetness scenario (19), 
“seasonally flooded.” The ex ante deep learning model (medium green bar) describes a projection 
of Sackett using ex ante data. The ex post deep learning model (dark green bar) describes a deep 
learning model that uses ex post Sackett Approved Jurisdictional Determination (AJD) data. AUC 
is the area under the receiver operating curve. F1 Score equals the harmonic mean of precision 
and recall. Precision equals TP / (TP + FP), where TP is the count of true positive predictions and 
FP is the count of false positive predictions. Precision represents the accuracy of all jurisdictional 
predictions. Recall equals TP / (TP + FN), where FN is the count of false negative predictions. 
Recall represents the share of all true jurisdictional waters predicted as jurisdictional. Precision 
and recall are undefined if a model makes no positive predictions. F1 Score, precision, and recall 
performance use the optimal threshold for F1 performance, chosen using the validation set.  



 

Fig. 2: Ex ante and ex post deep learning project that Sackett regulates a fourth to a third 
of water resources; geophysical models substantially under-predict Sackett regulation.  

Each bar describes the share of points regulated under separate models for Sackett jurisdiction. 
Ex ante and ex post deep learning average calibrated probabilities. The naïve benchmark (white 
bar) predicts that no location is jurisdictional. The Connected geophysical model (light blue bar) 
defines points as jurisdictional if they fall within a potentially regulated National Wetlands 
Inventory (NWI) polygon that connects with a perennial or intermittent National Hydrography 
Dataset (NHD) flowline. The Wetness geophysical model (medium blue bar) describes the median 
Wetness scenario (19), “seasonally flooded.” SI Appendix, Table S4 describes other wetness 
scenarios. The ex ante deep learning model (medium green bar) describes a projection of Sackett 
using ex ante data. The ex post deep learning model (dark green bar) describes a deep learning 
model that uses ex post Sackett AJD data. Streams include areas with 5 meters of perennial, 
intermittent, and ephemeral flowline feature codes (fcodes) 46006, 46003, 46007 in the NHD. 
Wetlands include areas with 5 meters of NWI wetlands. Floodplains are areas within floodplains 
from the National Flood Hazard Layer.



 

 

 

Fig. 3. Large variation in Clean Water Act jurisdiction across rules creates “regulatory ping pong.” The graph shows the share of 
points within 5 meters of stream or wetland (National Hydrography Dataset or National Wetland Inventory) features that are predicted as 
jurisdictional, by month, using the ex post deep learning model. To determine which Clean Water Act rule applied in each month, we use 
the rule used to decide a majority of Approved Jurisdictional Determinations within each state in each month, calculate statistics by state, 
and average across states, weighting by the number of points in the state. Between January 2018 and August 2019, some states 
implemented the Clean Water Rule and others implemented Rapanos, due to litigation. Fluctuations in the share of locations regulated 
during this period reflect state-level changes in rules applied due to stays on the Clean Water Rule’s implementation (41). Rapanos applied 
from September 2019 to May 2020. The Navigable Waters Protection Rule applied from June 2020 to August 2021. Rapanos (defined to 
include the 2023 rule) applied again from September 2021 to August 2023. Sackett applied from September 2023 onwards. The US 
Environmental Protection Agency and US Army Corps of Engineers are implementing two versions of Sackett in different states due to 
pending litigation, which we pool given their similarity. 



 

 

A     Ex post deep learning: Sackett 

 
B Ex ante deep learning: Sackett  C Connected geophysical model 

  
D Wetness geophysical model  E Ex post deep learning: Rapanos  

 



 

 

 
Fig. 4. Maps show that regulation under each Clean Water Act rule varies enormously 
across the US. (A) and (E) show ex post deep learning projections of jurisdiction under Sackett 
and Rapanos. SI Appendix, Fig. S5D shows ex post deep learning projections under NWPR. (B) 
shows ex ante deep learning projection of Sackett. (C) shows Connected geophysical model 
projections. (D) shows Wetness model (19) projections. Maps aggregate the four million 
prediction points by taking the mean model score in 5 km by 5 km grid cells (~8 prediction points 
per grid cell). Extreme calibrated probabilities (0.0 – 0.1; white, 0.9 – 1.0; blue) are plotted with 
the same color. Color scaling uses a power transformation (γ = 0.6) to improve visual 
differentiation at lower probability values. 
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A. Materials and Methods 1 

A.1: Model Details 2 

Geophysical Models. The Wetness geophysical model (1) analyzes several scenarios for how 3 
Sackett could affect jurisdiction. Each scenario assumes that a water resource inundated a certain 4 
fraction of the year is jurisdictional; this fraction varies by scenario. Ex ante, it is unclear which of 5 
the wetness scenarios to consider. The main text reports the median scenario in terms of wetness 6 
(scenario 4 out of 8). Table S4 discusses all scenarios. Scenarios 3 and 4 have the best performance 7 
in the validation set. Jurisdiction is not monotonic in wetness, and we observe both jurisdictional 8 
and non-jurisdictional AJDs in six of the eight water regimes with at least one AJD (Fig. S4).  9 

As mentioned in the main text, because the original wetness model presents results for a very 10 
specific set of non-tidal wetlands, we report results for three separate samples of Sackett AJDs. 11 
First, we consider AJDs within wetlands in the analysis area of the original Wetness model (1), 12 
which only includes 36 observations in the test set. Second, we consider AJDs within all NWI non-13 
tidal wetlands (N=640). Third, we consider all AJDs. To maximize comparability across models, 14 
our main results report the performance of the Wetness model for all Sackett AJDs and assume 15 
that AJDs not in the analysis area of (1) are non-jurisdictional.  16 

The Connected geophysical model closely follows the “damaging” and “very restrictive” 17 
geophysical models developed in (2, 3). We predict that any points within an NWI wetland 18 
polygon that intersects with a “navigable” NHD flowline are jurisdictional. “Navigable” in these 19 
models is defined as having an NHD feature code (fcode) of “perennial” or “intermittent”. 20 
Additionally, we follow the previous models by only considering flowlines “most likely to qualify 21 
as regulatory wetlands” (2, 3). Following NRDC (3), we only consider wetlands likely to be 22 
regulated.1 Following (2), we do not consider wetlands that have been drained, excavated, or 23 
farmed.  24 

We also consider a series of geophysical models that use a single geophysical input layers to 25 
predict jurisdiction (see Section A.5, B.1, and Table S5). Specifically, we predict Sackett 26 
jurisdiction using each of the geophysical input layers used as inputs to the deep learning models. 27 
The performance of the ex post model highlights the benefits of using deep learning to parse 28 
through many input layers and learn patterns that predict jurisdiction.  29 

Ex Ante Deep Learning Model. AJD data include classifications of water types (“resource 30 
types”) that differ by rule and that classify each water body. Each resource type corresponds to a 31 
legal description of a category of waters in a  rule, rather than to a geophysical classification (e.g., 32 
resource types often do not correspond to Cowardin (4) wetland types). Under NWPR, for 33 
example, AJDs classify some sites as “adjacent wetlands,” others as “non-adjacent wetlands,” and 34 
others as other types of sites. In machine learning terminology, each AJD provides a “label” for a 35 
location, since the AJD attaches a jurisdictional determination to the location, which is the outcome 36 
we seek to predict. Our ex ante deep learning model “relabels” AJDs by modifying the 37 

 
1 Specifically, we consider only wetlands with a vegetated component with codes EM: Emergent, SS: Scrub-Shrub, 
or FO: Forested and a water regime with codes A: Temporarily Flooded, C: Seasonally Flooded, D: Continuously 
Saturated, E: Seasonally Flooded/Saturated, F: Semi-permanently Flooded, G: Intermittently Exposed, or H: 
Permanently Flooded. 



jurisdictional determination made under one rule to reflect the decision that we conclude would 38 
have been made under a proposed rule. Conclusions about what to relabel come from our reading 39 
of the text of the Sackett decision but use no ex post information about Sackett implementation. 40 

Table S2 shows how we relabel AJDs to create the ex ante deep learning model. This relabeling 41 
scheme assumes that relative to NWPR, Sackett deregulates two categories of waters: wetlands 42 
separated from navigable waters by artificial structures and natural features. We believe these 43 
specific relabeling choices follow directly from majority opinion in Sackett. We chose them in 44 
June 2023, before USEPA announced a conforming rule or USACE announced associated 45 
guidance. SM B.5 of Greenhill et al. (5) discusses how changing labels in past  data could describe 46 
new rules, though questions the potential promise of this approach and does not implement it. 47 

We train the ex ante deep learning model in two steps. First, we pre-train the model using AJDs 48 
from all CWA rules besides Sackett. This pre-training allows the model to learn general 49 
relationships between input data and regulatory outcomes that are present across prior CWA rules. 50 
Second, we fine-tune the model using only data on the NWPR AJDs, which have already been 51 
relabeled to characterize Sackett. The fine tuning adapts the representation of the relationship 52 
between inputs and regulation learned in pre-training to a Sackett-specific interpretation of 53 
jurisdiction, without requiring the model to relearn general geophysical patterns from scratch. 54 

Our relabeling methodology builds on past work in machine learning. Most closely related is the 55 
tradition of weak and indirect supervision, where researchers generate labels for unlabeled data 56 
using heuristics of knowledge bases (6–8). Instead of generating entirely new labels for data with 57 
no existing labels, our approach transforms data that have already been labeled to reflect what the 58 
labels would be under a different rule. Unlike ex post deep learning models (5, 9), which are trained 59 
using true labels, or simulation-based methods (10), which project outcomes using process-based 60 
environmental models, our relabeling methodology derives labels by mapping historical decisions 61 
to the criteria of a new regulation. This allows deep learning to generate projections before data 62 
from the rule under consideration exist, enabling ex ante projection.  63 

Ex Post Deep Learning Model. As with the ex ante deep learning model, we train the ex post 64 
deep learning model in two steps. First, we pre-train a single model using pooled data from all 65 
Clean Water Act rules. Second, we fine-tune the model using only data from one rule at a time. 66 
We predict jurisdiction for each of the four main rules enforced since 2018—CWR, Rapanos, 67 
NWPR, and Sackett. We include the 2023 Rule together with Rapanos since they have extremely 68 
similar design. The next section describes deep learning architecture and training details.  69 

The deep learning models can predict jurisdiction for any coordinate in the contiguous US. They 70 
therefore avoid a predetermined decision between a framework only designed to analyze streams 71 
(11) or only designed to analyze non-tidal wetlands (1); each of these categories covers a small 72 
fraction of all AJDs. 73 
 74 
A.2: Deep Learning Model Architecture 75 

The ex ante and ex post deep learning models use an architecture that takes both raster data and 76 
tabular data as inputs to predict CWA jurisdiction. The rasters are gridded spatial data such as 77 
satellite imagery and maps of stream and wetland locations. For each AJD, we assemble raster 78 



data for a 308-by-308 meter (512-by-512 pixel) area centered at the AJD’s latitude and longitude. 79 
Tabular data are row-and-column data consisting of one row for each AJD. These describe 80 
characteristics of the location being evaluated – such as the USACE district deciding the AJD – 81 
that we treat as constant within the 308-by-308 meter neighborhood around the AJD. Each model 82 
outputs a raw model score for each site of interest between 0 and 1. As discussed in the main text, 83 
we then use isotonic regression to translate the raw model scores to a calibrated probability of 84 
regulation. 85 

The model architecture has two branches: one that processes the raster data, and one that processes 86 
the tabular data. The raster branch of the model has 29 input layers: color and near infrared aerial 87 
imagery; the locations and characteristics of streams and wetlands; elevation; summary statistics 88 
of long-run average precipitation, temperature, dewpoint temperature, vapor pressure deficit, solar 89 
radiation, and cloudiness; soils data; land cover data; and Level IV Ecoregions data. Section A.5 90 
provides additional details about input layers. Twenty-eight of these layers were used in Greenhill 91 
et al. (5); we add land cover data from the Coastal-Change Analysis Program (C-CAP) due to its 92 
resolution and quality, while recognizing that C-CAP covers only coastal areas. These inputs 93 
provide a detailed snapshot of ground conditions affecting the probability of CWA jurisdiction and 94 
include the main national layers that USACE reports using in AJDs. 95 

The tabular branch of the model consists of 89 features. These include one-hot encoded identifiers 96 
for the state and USACE district of the location being evaluated, the distance to district 97 
headquarters, and one-hot encoded information on the WOTUS rule under which the location’s 98 
jurisdictional status is being evaluated (i.e. Sackett, Rapanos, NWPR, or CWR). Section A.5 99 
discusses these features. Greenhill et al. (4) included these features in a raster format; we include 100 
them in a tabular format to improve computational efficiency. 101 

The branch processing the raster data is a ResNet-18 (14) convolutional neural network pre-trained 102 
on ImageNet (15). The convolutional neural network takes as inputs a stack of two-dimensional 103 
rasters and outputs a one-dimensional vector summarizing the information in those rasters that is 104 
most relevant to CWA jurisdictional status. This vector is combined with the vector of tabular 105 
features.  106 
 107 
The combined vector of features is then passed through a small two-layer neural network (a 108 
perceptron). This step flexibly interacts all the features, allowing for non-linearities and 109 
interactions between the information in the raster data and the information in the tabular data. For 110 
example, the presence of a stream may have different implications for jurisdiction in different 111 
states or USACE districts due to regional differences in hydrology or USACE practices. This step 112 
allows the model to learn such differences if they are present in the AJD data. 113 
 114 
Finally, the vector of fully interacted raster and tabular features is used to predict jurisdictional 115 
status. Intuitively, this last step is like running a regularized logistic regression, which penalizes 116 
model complexity, of jurisdictional status on the interacted raster and tabular features. In practice, 117 
all parts of the model are trained jointly so that the feature extraction and prediction steps are 118 
optimized together. 119 
 120 



We experimented with a geo-foundation model in the validation set that used embedding fields 121 
(12) but found that it modestly decreased performance in the validation set, perhaps because other 122 
layers had similar information and due to the sample size. We therefore do not use these embedding 123 
fields data. 124 

Train-Test Split. We divide the 202,295 AJDs into disjoint training, validation, and test data sets. 125 
We avoid footprint overlap between folds so as to prevent leakage across folds (Fig. S7). The deep 126 
learning models use the train, test, and validation split rules from Greenhill et al. (13) (SM, lines 127 
33–43), with a few extensions. When assigning groups for new Approved Jurisdictional 128 
Determinations (AJDs), we first create groups of AJDs with overlapping footprints. If a new AJD's 129 
footprint group overlaps with multiple groups of AJDs used in the original model, the new AJDs 130 
take the split of the AJD it overlaps with. If the new groups connect AJDs that the original model 131 
put in separate groups, we assign or reassign all to the same split. If an AJD from the original 132 
model is in the train split, we assign all connecting AJDs in the same footprint group to training, 133 
then testing, and finally validation. We split all new AJDs that do not overlap, following the 134 
procedure in (13). 135 

A.3: Synthetic Data 136 

AJDs tend to focus on sites where jurisdiction is ambiguous. AJDs therefore describe relatively 137 
few locations that are unambiguously jurisdictional (e.g., in the middle of the Great Lakes or 138 
Mississippi River), or non-jurisdictional (e.g., on desert mountain peaks). Augmenting the AJD 139 
data with locations where prior knowledge suggests unambiguous jurisdiction may improve the 140 
model’s generalizability. Adding unambiguous examples to the training data set may also improve 141 
the model's performance on the test set if the unambiguous examples provide relevant information 142 
to AJD jurisdiction, by helping the model learn features that predict both the unambiguous 143 
examples and the (typically more ambiguous) AJDs. 144 

We therefore add synthetic AJDs to the training and validation sets. Synthetic AJDs do not 145 
represent observed USACE decisions, but instead they represent sites where we generate a data 146 
point which we can conclude with high confidence represents the jurisdictional outcome that 147 
USACE would pick for the site if it had an AJD. We generate jurisdictional synthetic AJD points 148 
in perennial streams that terminate in navigable waters and in the largest 98 inland lakes that are 149 
deep enough for boat access. We generate non-jurisdictional synthetic AJDs for Sackett in isolated 150 
wetlands (prairie potholes, playas, West Coast vernal pools, and salt flats) and along hydrologic 151 
region (HUC2) boundaries (Tables S12, S13). We develop separate procedures for identifying 152 
unambiguously jurisdictional and non-jurisdictional locations, as detailed below. Figs. S7A and 153 
S7B map the synthetic data that we generate. 154 

Synthetic Data: Jurisdictional Locations. We generate jurisdictional synthetic training data 155 
within National Hydrography Dataset (NHD) (14) area stream, river, sea, and ocean polygons that 156 
connect to NHD flowlines terminating at navigable waters. All NHD flowlines list their terminal 157 
feature. We identify all NHD flowlines whose terminal feature is coastal, a large inland lake such 158 
as the Great Lakes or Humboldt lake, or at the US border; these are potentially navigable. To 159 
ensure completeness, we manually investigate the jurisdictional status of terminal features not 160 
meeting the criteria above that serve as a terminus for over 1,000 other flowlines. 161 
 162 



We keep all NHD area polygons classified as streams/rivers (NHD fcode: 46006) or sea/ocean 163 
(NHD fcode: 44500) that spatially intersect with a flowline identified above. To ensure we select 164 
coordinates inside the water body, we exclude area within a 10 meter buffer inside the boundary 165 
of each NHD area polygon. Finally, we randomly select coordinates from these polygons. Fig. 166 
S7A shows that this procedure primarily selects traditional navigable waters. 167 

Synthetic Data: Non-Jurisdictional Locations. We draw two sets of non-jurisdictional synthetic 168 
data: isolated wetlands and hydrologic unit code (HUC2) boundaries. 169 

Synthetic Non-Jurisdictional Data: Isolated Wetlands. We identify wetlands that are not 170 
jurisdictional under Sackett or NWPR by following the classification of Tiner (15). For each 171 
isolated wetland type in Table S1 and Fig. 3 of Tiner (15), we identify the US region with that type 172 
of isolated wetlands. Tables S12 and S13 describe our mapping from Tiner (15) wetland types to 173 
geographic regions. In some cases, one wetland type spans multiple geographic regions. We were 174 
unable to link about half of the Tiner categories to specific US regions, and therefore we do not 175 
generate synthetic non-jurisdictional training data for these categories. 176 

We then identify isolated wetlands separately for each region and isolated wetland type. We take 177 
all National Wetland Inventory (NWI) (16) polygons at least 100 meters from any navigable water, 178 
where we define navigable waters as above. 179 

To identify wetland types for non-jurisdictional synthetic data, we tabulate all AJDs with the 180 
identified NWI polygons satisfying the criteria of the previous paragraph, separately by Cowardin 181 
(4) code (Table S13). We require that AJDs within wetlands of that Cowardin code must satisfy 182 
the following additional criteria:  183 

1. We must observe at least 25 AJDs falling within wetlands of that Cowardin code;  184 
2. Across all rules, no more than 10% of AJDs within these wetlands can be 185 

jurisdictional;  186 
3. No more than 5% of Navigable Waters Protection Rule (NWPR) and Sackett AJDs 187 

within these wetlands can be jurisdictional.  188 

As one test of whether this procedure effectively identifies isolated wetlands, among the Sackett 189 
AJDs satisfying these criteria, we find that the Army Corps of Engineers (USACE) classifies 190 
resource codes for 97% as isolated wetlands. Other CWA rules lack a distinct resource type for 191 
isolated wetlands, so we cannot report comparable statistics from AJDs for other rules. We 192 
generate synthetic non-jurisdictional training data for NWPR and Sackett only, since the 193 
jurisdictional status of isolated wetlands is more ambiguous under other rules. 194 

Synthetic Non-Jurisdictional Data: HUC2 Boundaries. We generate additional synthetic non-195 
jurisdictional training data along hydrologic region boundaries. The US Geological Survey defines 196 
a HUC as land area within which surface water drains to a point. We focus on the 21 HUC2 water 197 
resource regions, which define the drainage areas of one or multiple major rivers. HUC2 198 
boundaries are typically uplands, since they demarcate one drainage region from another, and thus 199 
are not jurisdictional. For example, the Pacific Northwest constitutes one HUC2, bounded by 200 
several mountain ranges (Pacific Coast, Siskiyou, Absaroka, and others). The Continental Divide 201 
and Great Basin distinguish parts of other HUC2 boundaries. One could oversimplify a HUC2 202 
boundary as a mountain ridge where one side has streams flowing to the East and the other side 203 



has streams flowing to the west, though many HUC2 boundary areas in the Midwest and South 204 
are along the highest portion of low-elevation sloped areas. 205 

To generate synthetic training data along HUC2 boundaries, we randomly sample points satisfying 206 
the following criteria: 207 

1. Within 50 meters of HUC2 boundaries  208 
2. Not within 50 kilometers of international borders  209 
3. Not within 50 meters of any NHD flowline that NHD indicates terminates in an ocean, 210 

large inland lake, or US border  211 
4. Not within 50 meters of any NHD area polygon intersecting such NHD flowlines. 212 

We exclude areas within 50 kilometers of international borders since some HUC2 boundaries 213 
coincide with oceans and Great Lakes.  214 

As one test of whether this strategy accurately identifies non-jurisdictional areas, we examine the 215 
69 true AJDs satisfying all these criteria. Among these AJDs, 37 were completed under Rapanos, 216 
7 under the Clean Water Rule, 7 under NWPR, and 18 under Sackett. USACE concluded that none 217 
of these 69 AJDs are jurisdictional.  218 

Synthetic Data: Model Training. In model development using the training and validation sets, 219 
we experimented with including different quantities of synthetic data, between about 500 synthetic 220 
points up to 100,000. We found that AJD validation set performance was maximized around 1,000 221 
points of each synthetic type (i.e., 1,000 synthetic jurisdictional points, 1,000 synthetic non-222 
jurisdictional points from HUC2 boundaries, and 1,000 of each of the synthetic non-jurisdictional 223 
isolated wetland types).  224 

Synthetic data improve model performance both for traditional navigable waters and more 225 
ambiguous cases. Our ex post deep learning model has near-perfect accuracy on synthetic data. 226 
Because the synthetic data are not in the validation set or the held-out test set, no model 227 
performance statistics elsewhere in the paper describe the synthetic data. Additionally, including 228 
synthetic data improves model accuracy on AJDs by 2 to 3 percentage points in the validation set, 229 
as well as improving both precision and recall by 6 to 7 percentage points each. This suggests that 230 
including synthetic points helps the model distinguish between ambiguous and unambiguous 231 
decisions, and so reduces the rate at which the model produces both false positive and false 232 
negative predictions. 233 

A.4 AJD PDF Files  234 

We obtain labels from tabular data that USEPA and USACE provide online (17) and that we 235 
downloaded on March 24, 2025. For each AJD, USACE staff complete a document listing 236 
jurisdiction of each potential water resource in the project, and USEPA and USACE then 237 
separately hand-enter the AJD content into the tabular data we use as labels. PDFs of the AJD 238 
documents are available for a limited subset of sites, while the tabular data are available for all 239 
sites.  240 

To assess potential classification errors in the labels, we manually compare labels in the tabular 241 
data and the AJD documents. We find that labels in the AJD PDF documents disagree with labels 242 
in the tabular data for 3.4% of AJDs, and have coordinates differing by more than 217.8 meters 243 



for 19.4% of AJDs, meaning that the input data tile does not include the location evaluated by the 244 
AJD. The percentage of differential coordinates partially reflects many project PDFs listing the 245 
project centroid, rather than the centroid of the relevant water feature. We do not use the AJD 246 
document labels or coordinates as ground truth data for a few reasons—the AJD documents are 247 
only available for 7,556 of over 40,000 projects in our sample; a single AJD document often reports 248 
labels for many potential water resources within a development project and correctly mapping 249 
each water feature's label to the water features within the project can introduce additional error; 250 
and few AJD documents list coordinates for individual water resources, while many list 251 
coordinates for the project centroid. 252 

A.5 Input Layers 253 

Our deep learning models take as inputs 29 raster layers and 89 tabular features. Twenty-eight of 254 
the raster layers are identical to those used in Greenhill et al. (13): three-band color and near 255 
infrared aerial imagery from the National Agricultural Imagery Program (NAIP) (18); wetland 256 
types from NWI (16); river and stream feature codes, stream order, seasonal high and low flows, 257 
and path lengths from NHD; elevation from the 3D Elevation Program; land cover data from the 258 
National Land Cover Dataset (NLCD) (19); soil taxonomic class, hydric rating, water table depth, 259 
flooding frequency, and ponding frequency from the Gridded National Soil Survey Geographic 260 
Database (gNATSGO) (20); average annual total precipitation, average daily minimum 261 
temperature, average daily maximum temperature, average daily mean temperature, average daily 262 
dew point temperature, average daily minimum vapor pressure deficit (VPD), average daily 263 
maximum VPD, average daily clear sky and total solar radiation, and average daily atmospheric 264 
transmittance (cloudiness), all for 1990–2021, from the Parameter-elevation Regressions on 265 
Independent Slopes Model (PRISM) 30-year normal (21); and level IV Ecoregions (22). Further 266 
details about these layers are available in Table S4 of Greenhill et al. (13). We also include land 267 
cover data from the Coastal Change Analysis Program (C-CAP) (23), which has higher native 268 
resolution and is sometimes believed to be more accurate than NLCD. Because C-CAP covers 269 
only coastal areas, we also use NLCD. All raster inputs are resampled from their original resolution 270 
to match the resolution of the 0.6 meter NAIP imagery, resulting in 512 by 512 pixel rasters 271 
centered at the location being evaluated, covering an area of approximately 308 by 308 meters. 272 
Several raster input layers are available only in the contiguous US, so we restrict our analysis to 273 
this region. We selected raster input layers based on the datasets that USACE engineers most 274 
frequently cited in the PDF files accompanying AJDs (13). 275 

The 89 tabular features consist of one-hot encoded identifiers for the state and USACE district of 276 
the location being evaluated, the distance to district headquarters, and one-hot encoded information 277 
on the WOTUS rule under which the location’s jurisdictional status is being evaluated. State and 278 
USACE district boundaries have an important influence on jurisdictional rates. Similarly, distance 279 
to district headquarters may influence the likelihood that a site receives a field visit, which may 280 
also affect jurisdictional determinations (13). Including one-hot encoded rule information allows 281 
us to capture differences across rules and produce model predictions for the same locations under 282 
different rules. 283 

Our visual review of spatial patterns in the 4 million prediction points reveals that deep learning 284 
predictions occasionally display discontinuities within a water body. Investigation indicates that 285 
discontinuities in input layers, typically the National Agricultural Imagery Program (NAIP) (18) 286 



and the Gridded National Soil Survey Geographic Database (gNATSGO) (20), drive these 287 
patterns. In all examples we investigated, the algorithm itself does not generate these discontinuous 288 
patterns except insofar as the inputs have them. The infrequent abrupt changes in NAIP inputs that 289 
we identified reflect cloud cover affecting processing of remote sensing data. gNATSGO combines 290 
the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database version 2, and 291 
the Raster Soil Survey data. Analysts create SSURGO by stitching together soil survey areas. One 292 
survey area may cover one or several entire counties or parts of counties. This stitching process 293 
occasionally produces discrete spatial changes in gNATSGO inputs. 294 

A.6: Agriculture 295 

The CWA excludes prior converted cropland from jurisdiction, but many AJD coordinates fall 296 
within NLCD’s cropland layer. To understand this contrast, an additional analysis manually 297 
investigated a sample of 88 jurisdictional AJDs from Rapanos, NWPR, and Sackett which have 298 
coordinates within NLCD’s cropland layer. For each AJD where a document was available, this 299 
analysis checked the coordinate in the USEPA-USACE tabular data against the coordinate in the 300 
document. This analysis inspected Google Earth imagery from these coordinates and compared 301 
against any maps in the AJD document. This analysis found that only 12.5% of the sample of AJDs 302 
(11 AJDs) within NLCD’s cropland layer represented agricultural activity. For these AJDs, the 303 
AJD documents contained insufficient information to determine why the AJD was jurisdictional 304 
and was not excluded as prior converted cropland. For example, it is possible these sites became 305 
cropland recently so were not “prior.” Of the remaining AJDs, 48.9% were near agriculture but 306 
not on a field (e.g., a pond or house next to cropland), 29.5% appeared to have slight reporting 307 
error in the coordinate, and 9.1% had incorrect labels, as Section A.4 discusses.  308 

A.7: Model Calibration and Decision Threshold Choice 309 

Raw deep learning model scores have imperfect calibration, i.e., model scores do not reflect the 310 
probability that a point is regulated. We determine this by comparing bins of deep learning model 311 
scores against the empirical probability that AJDs in a bin are jurisdictional. To improve model 312 
calibration, we fit an isotonic regression on the training set, then use the fitted isotonic regression 313 
model to calibrate out-of-sample predictions. This procedure improves model calibration, 314 
especially for calibrated probabilities below 0.6. The Brier score, a common measure of the quality 315 
of model mis-calibration, is 0.178 on the test set before calibration and 0.148 after calibration.  316 

Geophysical models primarily generate binary predictions of whether a site is jurisdictional. Deep 317 
learning models produce continuous model scores, which we calibrate to describe the probability 318 
that a site is regulated. Deep learning models can also generate a binary jurisdictional prediction 319 
indicating whether the site’s calibrated probability exceeds a given threshold (e.g., 0.5). To use all 320 
information from the model, when we report the share of an area that is jurisdictional, we average 321 
calibrated probabilities rather than averaging binary jurisdictional predictions. 322 

Different stakeholders may value different model performance metrics and may thus prefer 323 
different decision thresholds for binary jurisdictional classification. The AUC summarizes how 324 
well a model ranks locations, from more to less likely to be regulated. It therefore aggregates across 325 
all possible decision thresholds without requiring a binary decision cutoff. For example, an AUC 326 



of 1.0 means the model always assigns higher probability to a jurisdictional site than to a non-327 
jurisdictional site.  328 

For other metrics, Table S1 reports model performance for classification thresholds that differ by 329 
performance metric, with each threshold chosen to optimize the performance metric of interest. 330 
We use the validation set to choose these thresholds. To evaluate the sensitivity of threshold choice 331 
to validation set sampling variation, we implemented threshold selection using five-fold cross 332 
validation and observed minimal variation in the selected thresholds. 333 

Fig. S8 shows how performance metrics vary across decision thresholds in the validation set. We 334 
choose optimal thresholds based on performance in the validation set, and then apply these to the 335 
test set. Table S14 reports all test set performance metrics at the optimal threshold for each metric. 336 
AUC is invariant to threshold choice. Thresholds near 0.25 optimize F1 score and state MAE. A 337 
lower threshold, 0.17, optimizes national MAE. A decision threshold near 0.50 maximizes overall 338 
accuracy. The figure shows that much of the threshold domain has flat curves, suggesting that 339 
threshold choice has only a marginal impact on overall performance. Furthermore, during model 340 
development, we implemented five-fold cross validation for threshold selection on the validation 341 
set and found that optimal thresholds and the corresponding metrics did not change substantially 342 
across folds. 343 

Histograms show the distribution of the calibrated probabilities (Fig. S9). Ex post deep learning 344 
has high confidence—–few sites have a score near 50% and most have calibrated probabilities 345 
below 20% or above 80%. Slight visual differences in probabilities seen between ex post and ex 346 
ante deep learning in Fig. 4 are explained by differences in the share of the 4 million prediction 347 
points with extreme values less than 20%. Ex post deep learning predicts 95% of the 4 million 348 
points with a probability of <20%, while ex ante deep learning only predicts 88%. Fig. S9 shows 349 
ex ante deep learning has more predictions in the 20–80% range, particularly within 20–40%. This 350 
small difference is accentuated by the gamma power transformation of the color ramp used in Fig. 351 
4. 352 

A.8: Prediction Points 353 

We report model predictions for groups of sites. We randomly select 4 million points across the 354 
contiguous US, using the same set of locations analyzed by Greenhill et al. (13). These are gathered 355 
by dividing the contiguous US into approximately 80,000 0.1 by 0.1 degree grid cells, then 356 
randomly sampling 50 points in each cell. This large number of points allows us to produce high 357 
resolution maps (Fig. 4), case studies (Fig. S1, S6), and report on predicted regulation overall and 358 
at specific locations of interest (Table S3). We separately report predictions for streams, wetlands, 359 
agricultural sites, floodplains, developed urban areas, and areas likely to see urban growth in the 360 
future. We identify these areas using NHD (14), NWI (16), the National Land Cover Dataset 361 
(NLCD) (19), and the National Flood Insurance Program (NFIP) (24), and Integrated Climate and 362 
Land Use Scenarios (ICLUS) (25) . 363 

We report the mean calibrated probability for the 4 million prediction points and for subsets of 364 
these points in important areas, including within 5 m of NWI wetlands or NHD streams (Table 365 
S3). Because we average across points, we interpret these in terms of stream miles and wetland 366 
acres. 367 



B. Supplementary Text 368 

B.1: Geophysical Model Projections  369 

Table S5B presents models using one geophysical input layer at a time to determine jurisdiction. 370 
For example, the presence of hydric soils is sometimes taken as an indicator of historic wetlands 371 
(26). A prediction relying on whether a site has hydric soils has an AUC of only 0.492, which is 372 
worse than the naïve benchmark, and F1 of 0.295. Row 9 shows that a model assuming sites with 373 
water table depth less than 10 m are jurisdictional also performs poorly. The CWA excludes prior 374 
converted cropland and urban developed areas from jurisdiction, so rows 10 and 11 use crop cover 375 
and built-up area classes in the NLCD. Again, these rules perform poorly. 376 

The Connected Wetlands model reported in all analysis assumes that only NWI wetlands that 377 
intersect with a “navigable” NHD are regulated. The Connected model performs poorly, 378 
particularly when making national predictions, in part because many jurisdictional areas under 379 
Sackett are not identified as wetlands in the NWI dataset.  380 

B.2: Projections Using Probabilities Versus Binary Jurisdictional Predictions 381 

As discussed in the main text, to estimate jurisdiction across groups of sites, Tables S3 and S7 382 
average calibrated probabilities. These tables use the calibrated probabilities since binary 383 
jurisdictional predictions discard information by discretizing each site to an indicator for whether 384 
the calibrated probability exceeds a threshold. For example, if all sites in an area had a calibrated 385 
probability of 0.20, averaging the calibrated probabilities would indicate that 20% of sites are 386 
jurisdictional, while averaging the binary jurisdictional predictions would indicate that 0% of sites 387 
are jurisdictional.  388 

To understand the consequences of this choice, we re-estimated Table S7 by averaging the binary 389 
jurisdictional predictions. Averaging the binary predictions would imply that 11.6% of all sites are 390 
jurisdictional under Rapanos and 5.8% under NWPR. These are well below the values that average 391 
calibrated probabilities. Averaging the binary predictions rather than averaging the calibrated 392 
probabilities mostly decreases the estimated share of points that are jurisdictional for NWPR, and 393 
for points without streams or wetlands. This occurs because, as in the example from the previous 394 
paragraph, binary jurisdictional predictions adjust sites with low calibrated probabilities to zero, 395 
but the calibrated probabilities retain some non-zero estimated probability of regulation for such 396 
sites.  397 
 398 
B.3: Additional Discussion of Results 399 
 400 
On the full sample, wetness thresholds besides the main scenario discussed in the main text all 401 
have similar performance (Table S4). In the non-tidal wetlands sample (N=36), performance 402 
varies widely across scenarios, reflecting the small sample. Wetness scenarios 3 and 4, which 403 
perform best in the validation sample, have test set AUC of 0.417, well below the benchmark. 404 

Rapanos and CWR let deep learning observe more true positives, increasing recall. NWPR and 405 
Sackett have fewer true positives, decreasing opportunities to learn to predict positives for these 406 



rules. Ex post deep learning national MAE is also near zero for Rapanos and NWPR, though much 407 
higher for CWR, which has the smallest sample. 408 
 409 
 410 
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Fig. S1. Case studies reveal performance of ex ante deep learning and spatial patterns of 
jurisdiction.  
Ex post DL: Rapanos                   Ex post DL: Sackett                  Ex ante DL: Sackett  
A  Upper Peninsula Wetlands, Michigan 

                           
B  Holly Shelter Game Area, North Carolina 

                           
C  Colorado River south of Moab, Utah 

                           
D  Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana 

                           

 



DL is deep learning. Columns show calibrated model scores for local subsets of the 4 million 
random prediction points under three different deep learning models. DL is deep learning. (A) 
Lakes and wetlands in the Upper Peninsula of Michigan. All models predict jurisdiction for large 
water bodies. Ex post deep learning predicts that Rapanos regulates most of the area, Sackett 
regulates surrounding wetlands, and ex ante deep learning closely mirrors ex post deep learning. 
(B) Holly Shelter Game Area, North Carolina. Ex post deep learning predicts that Rapanos 
regulates most of this coastal outdoor recreation area and Sackett predicts systematically less 
jurisdiction. Ex ante deep learning has predictions between these two. (C) Colorado River and 
ephemeral streams south of Moab, Utah. All models classify the Colorado River as jurisdictional. 
Ex post deep learning predicts that relative to Rapanos, Sackett deregulates ephemeral streams 
supplying the river. (D) Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana. 
All models classify Flathead Lake in the southwest of the image and the Hungry Horse Reservoir 
in the northeast corner as jurisdictional. Ex post deep learning model predicts that Rapanos 
extensively regulates areas of Flathead Forest between the water bodies, Sackett regulates little, 
and ex ante deep learning concurs. Color scaling uses a power transformation (γ = 0.6) to improve 
visual differentiation at lower probability values. Figure best viewed in color. 
 



Fig. S2. Sackett deregulates areas that support ecosystem services and are important for 
CWA goals.  
A  Drinking water sources  B  Floodplains 

  
C  Polluted waters    D  Fish habitat conditions 

  
 (A) Share of points in drinking water source areas. (B) Share of points in floodplains (42). (C) 
Proportion of assessed waters considered “impaired” based on pollution and intended use. (D) 
Fish habitat conditions (0=worst, 1=best). Each panel splits 4 million random points into the 5km 
by 5 km grid cells used to plot Fig. 4. In each graph, the y-axis shows the mean calibrated 
probability from ex post Rapanos and Sackett deep learning models, and the x-axis shows the 
mean ecosystem value within the grid cell. The x-axis divides grid cells into equal-width bins (0–
1 scale) based on underlying values. The legend shows the grid-level regression coefficient, 
with standard errors in parentheses. In all four panels, a hypothesis test that Rapanos and 
Sackett have equal slopes rejects with p-value < 0.000, estimated from the interaction term in a 
pooled regression including both rules. Impaired waters and fish habitat conditions are 
measured by 12-digit hydrologic unit code (HUC12) from the EPA’s 2025 Restoration and 
Protection Indicator Database (43).  



 
Fig. S3. Ex ante and ex post deep learning outperform geophysical models.  
A Receiver operating curves – Sackett    B Precision-recall curves – Sackett  

   
C  Receiver operating curves – comparing rules   D Precision-recall curves – comparing rules 

   
(A) and (C) show the Receiver operating curve (ROC) and the Area Under the Curve (AUC). The 
ROC plots the True Positive Rate (share of correctly identified positives) against the False 
Positive Rate (share of negatives incorrectly identified as positive) across all classification 
thresholds. For example, the left-most point corresponds to a threshold above one, predicting no 
positives. The right-most point corresponds to a threshold below zero, predicting all positives. Ex 
post deep learning (Sackett) has 69.1% probability of ranking a randomly chosen jurisdictional 
AJD higher than a randomly chosen non-jurisdictional AJD. AUC = 0.5 is random chance, AUC-
ROC = 1 is perfect. Pooling all CWA rules, ex post deep learning has a 0.837 AUC. (B) and (D) 
show the Precision-Recall (PR) Curve and the Area Under the Curve (AUCPR). The PR curve 
plots precision (share of predicted positives that are true positives) against recall (share of true 
positives identified) across all classification thresholds. The AUCPR averages precision across 
all recall levels. A random classifier has an AUC-PR of 0.197 since 19.7% of Sackett AJDs are 
jurisdictional. Ex post deep learning (Sackett)’s AUCPR of 0.402 means the model identifies 
positive cases with about twice the precision as a random classifier, indicating strong performance 
in detecting jurisdictional AJDs despite class imbalance. Pooling all rules, a random classifier has 
an AUCPR of 0.325 since 32.5% of AJDs are jurisdictional. Also pooling all rules, ex post deep 
learning’s AUCPR of 0.749 means the model identifies positive cases with over twice the precision 
as random guessing, indicating strong performance in detecting jurisdictional AJDs despite class 
imbalance. The PR curves focus on positive-class performance and are more informative under 
class imbalance. Curves are constructed by using all unique calibrated model scores as 



thresholds. All curves are independent of any chosen classification cutoff. Because Gold (1), 
Connected, and the naïve results have binary model scores, these are plotted as points rather 
than lines.  
  



 

 

Fig. S4. NWI Wetness values for Sackett AJDs noisily measure jurisdiction. 

 
NWI “Water Regime” values differ across both non-jurisdictional and jurisdictional Sackett AJDs. 
Some jurisdictional AJDs have relatively low wetness, and some non-jurisdictional AJDs have 
relatively high wetness. This figure plots the water regime value, which describes “Wetness” in 
Gold (1) scenarios, for all 322 Sackett AJDs that fall within a NWI polygon in Gold (1). Dark blue 
bars display non-jurisdictional AJDs; light orange bars display jurisdictional AJDs. SD is standard 
deviation.

  



Fig. S5. Maps show large spatial differences in regulation across rules and models.  
A Ex post deep learning: Sackett – Rapanos  B  Sackett: Ex ante – ex post deep learning 

    
 
C Ex post deep learning: Sackett – NWPR    D NWPR: Ex post deep learning projections 

   

 
 
Brown represents newly deregulated, blue represents newly regulated. Maps show changes from (A) 
Rapanos to Sackett under ex post deep learning; (B) ex post to ex ante deep learning; (C) NWPR to Sackett 
under ex post deep learning. (D) shows ex post deep learning projections under NWPR. Maps aggregate 
the four million prediction points by taking the mean model score in 5 km by 5 km grid cells (~8 prediction 
points per grid cell). 



Fig. S6. Case studies show differences across rules and spatial patterns of jurisdiction. 
         Ex post DL (NWPR)                    Connected               Wetness 
A  Upper Peninsula Wetlands, Michigan 

           
B Holly Shelter Game Area, North Carolina 

           
C  Colorado River south of Moab, Utah 

           
D  Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana 

           

 
Columns show calibrated model scores for prediction points under three different models, one deep 
learning and two geophysical. The first column shows ex post deep learning (NWPR), the second column 



shows the Connected model, and the third column shows the Wetness (1) model (seasonally flooded 
scenario). The Wetness model only shows prediction points within wetlands used in Gold (1, 27) which 
lack information for most prediction points. (A), Lakes and wetlands in the Upper Peninsula of Michigan. 
Ex post deep learning (NWPR) and the Connected model predict little jurisdiction for surrounding 
wetlands, and the Wetness model predicts jurisdiction for different surrounding wetlands and information 
for many points. (B), Holly Shelter Game Area, North Carolina. Ex post deep learning (NWPR) classifies 
most points as jurisdictional in this coastal outdoor recreation area. The Connected model and the 
Wetness model predicts little jurisdiction. (C), Colorado River and ephemeral streams south of Moab, 
Utah. Ex post deep learning (NWPR) predicts no jurisdiction for ephemeral streams upstream of the river. 
The Connected model predicts no jurisdiction, and the Wetness model has no information for any points. 
(D), Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana. Ex post deep learning 
(NWPR) classifies the lake in the southwest corner and the reservoir in the northeast corner as 
jurisdictional, but do not regulate the Flathead Forest. The Connected model predicts no regulation, and 
the Wetness model has almost no information on sites in the area. Color scaling uses a power 
transformation (γ = 0.6) to improve visual differentiation at lower probability values. Figure best viewed in 
color. 

  



Fig. S7. Synthetic and true training data span most US regions.  
A Synthetic jurisdictional points    B Synthetic non-jurisdictional points 

        
  
C  True AJDS        D Sackett AJDs  

          
      
E Rapanos AJDs        F NWPR AJDs  

         
   
G CWR AJDs        H True AJDs, by split  



       
  

(A), synthetic jurisdictional AJDs and (B), synthetic non-jurisdictional AJDs, both colored by water resource 
type. (C), true (non-synthetic) AJDs, colored by label. (D)–(G) separate true AJDs by rule. (H) colors true 
AJDs by split. Lines in (A)–(F) show states; lines in (H) show Army Corps (USACE) districts.  
  



 

Fig. S8. Jurisdictional thresholds optimize model performance for each metric.  
 A  F1-Score, Precision, Recall, and Specificity 

 
B  Accuracy, Overall Mean Absolute Error (MAE), and State MAE 

 

 

The ex post deep learning (Sackett) model predicts a site as jurisdictional if its calibrated probability 
exceeds the relevant threshold. The y-axis in each graph shows the model’s performance on the metric of 
interest if the model uses the threshold indicated on the x-axis. Each line with markers shows a different 
performance metric. (A), the blue line with circles shows F1; the red line with squares shows recall; the 
purple line with triangles shows precision; and the brown line with inverted triangles shows specificity. The 
vertical dashed blue line shows the threshold which maximizes F1. (B), the orange line with circles shows 
accuracy, the green line with squares shows MAE, and the pink line with triangle shows state MAE. Each 
vertical line shows the threshold which maximize the performance metric with matching color (e.g., the 
dashed green line shows the threshold which maximizes MAE, which is also shown in green). The 
horizontal dashed lines show performance of a naïve benchmark that assumes no sites are jurisdictional.



Fig. S9. Distribution of calibrated probabilities of regulation differ by rule and sample, though 
concentrate below 0.2 or over 0.8. 

A Ex post deep learning (Sackett) – 4mn points B Ex post deep learning (Sackett) – test set 

    

C Ex post deep learning (Rapanos) – 4mn points  D Ex post deep learning (Rapanos) – test set 

   

  

E Ex post deep learning (NWPR) – 4mn points F Ex post deep learning (NWPR) – test set 

   

(continued next page) 



(continued from previous page) 

G Ex ante deep learning (Sackett) – 4mn points H Ex ante deep learning (Sackett) – test set 

   

I Ex post deep learning (CWR) – 4mn points  J Ex post deep learning (CWR) – test set 

   

For each rule and for either the 4 million prediction points or the test set, each graph shows the share of 
points with a calibrated probability in one of five evenly sized bins spanning 0.0 to 1.0. Across all rules, and 
in both the 4 million random prediction points and the test set, around 90 percent of sites have calibrated 
probabilities below 0.2 or above 0.8, indicating that the model has high confidence. The test set has higher 
jurisdictional probabilities than the 4 million random prediction points because AJDs disproportionately 
represent sites with potential water resources.  
  



Fig. S10. Relabeling captures Sackett’s deregulation of areas with concentrated ecosystem 
services and relevant to CWA goals. 
A  Drinking water sources   B Floodplains 

  
C  Polluted waters    D Fish habitat conditions 

  
(A) Share of points in drinking water source areas. (B) Share of points in floodplains. (C) Proportion of 
assessed waters considered “impaired” based on ambient pollution and relevant standards. (D) Fish habitat 
condition score. Each panel splits 4 million random points into the 251,975 5km by 5 km grid cells used to 
plot Fig. 4. In each graph, the y-axis shows the mean calibrated probability from ex post deep learning 
(NWPR) and ex ante deep learning, and the x-axis shows the mean value within the grid cell. The x-axis 
divides grid cells into equal-width bins (0–1 scale) based on underlying values. The legend shows the grid-
level regression coefficient with standard errors in parentheses. Impaired waters and fish habitat conditions 
measured by 12-digit hydrologic unit code (HUC12) from the EPA’s 2025 Restoration and Protection 
Indicator Database (28). 



Table S1: Geophysical models modestly improve on naïve benchmark, ex ante deep learning does 
better, ex post deep learning has strongest performance. 

 AUC F1 Precision Recall Accuracy MAE  

  (1) (2) (3) (4) (5) (6) 
 

a Naïve benchmark             
 

 No jurisdiction 0.500 0.000 — 0.000 0.803 0.197 
 

b Geophysical models         
 

 1. Wetness  0.498 0.007 0.118 0.004 0.798 0.191 
 

 2. Connected  0.512 0.065 0.463 0.035 0.802 0.183 
 

c Ex ante deep learning model           
 

 3. Sackett 0.693 0.332 0.457 0.261 0.802 0.066 
 

d Ex post deep learning model           
 

 4. Sackett 0.691 0.368 0.502 0.290 0.819 0.001 
 

 All statistics use AJD test set. AUC: Area under the receiver operating curve. All models describe Sackett. 
F1: harmonic mean of precision and recall. Precision: TP / (TP + FP), where TP is the count of true positive 
predictions and FP is the count of false positive predictions. Recall: TP / (TP + FN), where FN is the count 
of false negative predictions. Precision is undefined if a model makes no positive predictions. Accuracy: 
percent correct. MAE equals |mean(𝐽௜) − mean(𝐶௜)|, where 𝐽௜ represents AJD jurisdiction and 𝐶௜ represents 
model predictions. Row 1 describes a naïve benchmark that predicts no location is jurisdictional. Row 2 
describes the median Wetness model (1), “seasonally flooded.” Row 3 defines points as jurisdictional if 
they fall within a potential regulatory National Wetlands Inventory (NWI) polygon that connects with a 
perennial or intermittent National Hydrography Dataset (NHD) flowline. Row 4 describes the ex ante deep 
learning model projection of Sackett using ex ante data. Row 5 describes the ex post Sackett deep learning 
model. Rows 4 and 5 show performance of calibrated probabilities with thresholds optimized for 
performance for F1 in columns (2), (3), and (4), accuracy in column (5), and national mean absolute error 
(MAE) in column (7). Column (1) depends on model calibrated probabilities and is independent of threshold 
choice. SI Appendix, Table S14 and Fig. S8, show the thresholds. N = 2,777.  
 



Table S2. Relabeling NWPR AJDs allows training of ex ante deep learning  

      
Jurisdictional 

under  

  Definition 
Share of 

AJDs NWPR 
Ex ante deep 

learning 
  (1) (2) (3) (4) 

A1TNW10 

(a)(1) Water is also subject to Sections 9 or 10 of the 
Rivers and Harbors Act - RHA Tidal water is subject 
to the ebb and flow of the tide 0.0035 Yes Yes 

A1TNWCOMM 

(a)(1) Water is currently used, was used in the past, 
or may be susceptible to use in interstate or foreign 
commerce (CWA Section 404 only) 0.00067 Yes Yes 

A1TNWFED 
(a)(1) A federal court has determined the water is 
navigable in fact under federal law 0.00011 Yes Yes 

A1TNWSEAS (a)(1) Territorial Seas 6.4E-05 Yes Yes 

A2TRIBINT 

(a)(2) Intermittent tributary contributes surface water 
flow directly or indirectly to an (a)(1) water in a typical 
year 0.072 Yes Yes 

A2TRIBPER 

(a)(2) Perennial tributary contributes surface water 
flow directly or indirectly to an (a)(1) water in a typical 
year 0.039 Yes Yes 

A3LPIFLOOD 

(a)(3) Lake/pond or impoundment of a jurisdictional 
water inundated by flooding from an (a)(1)-(a)(3) 
water in a typical year 0.0013 Yes Yes 

A3LPIFLOW 

(a)(3) Lake/pond or impoundment of a jurisdictional 
water contributes surface water flow directly or 
indirectly to an (a)(1) water in a typical year 0.0057 Yes Yes 

A4WETABUT (a)(4) Wetland abuts an (a)(1)-(a)(3) water 0.11 Yes Yes 

A4WETARTSEP 

(a)(4) Wetland separated from an (a)(1)-(a)(3) 
water only by an artificial structure allowing a 
direct hydrologic surface connection between the 
wetland and the (a)(1)-(a)(3) water in a typical 
year 0.0076 Yes No 

A4WETFLOOD 
(a)(4) Wetland inundated by flooding from an 
(a)(1)-(a)(3) water in a typical year 0.0081 Yes Yes 

A4WETNATSEP 
(a)(4) Wetland separated from an (a)(1)-(a)(3) 
water only by a natural feature 0.0027 Yes No 

B10STORM 

(b)(10) Stormwater control feature constructed or 
excavated in upland or in a non-jurisdictional water to 
convey, treat, infiltrate, or store stormwater runoff 0.02 No No 

B11REUSE 

(b)(11) Groundwater recharge, water reuse, or a 
wastewater recycling structure constructed or 
excavated in upland or in a non-jurisdictional water 0.00024 No No 

B12WTS (b)(12) Waste treatment system 0.0018 No No 

 (Continued next page) 
  



Table S2. Relabeling NWPR AJDs allows training of ex ante deep learning (Continued) 

      
Jurisdictional 

under  

  Definition 

Share 
of 

AJDs NWPR 
Ex ante deep 

learning 
  (1) (2) (3) (4) 

B1EXCLUDEDOTH 

(b)(1) Water or water feature that is not identified in 
(a)(1)-(a)(4) and does not meet the other (b)(1) sub-
categories 0.011 No No 

B1LPINOSCFLD 

(b)(1) Lake/pond or impoundment that does not 
contribute surface water flow directly or indirectly to 
an (a)(1) water and is not inundated by flooding from 
an (a)(1)-(a)(3) water in a typical year 0.014 No No 

B1SWCNOSC 

(b)(1) Surface water channel that does not contribute 
surface water flow directly or indirectly to an (a)(1) 
water in a typical year 0.0078 No No 

B1WETNONADJ (b)(1) Non-adjacent wetland 0.31 No No 

B2GRNDWATER 
(b)(2) Groundwater, including groundwater drained 
through subsurface drainage systems 0.00011 No No 

B3EPHEMERAL 
(b)(3) Ephemeral feature, including an ephemeral 
stream, swale, gully, rill, or pool 0.22 No No 

B4SHEETFLOW 
(b)(4) Diffuse stormwater run-off over upland or 
directional sheet flow over upland 0.0016 No No 

B5DITCH 

(b)(5) Ditch that is not an (a)(1) or (a)(2) water, and 
those portions of a ditch constructed in an (a)(4) 
water that do not satisfy the conditions of (c)(1) 0.094 No No 

B6PCC (b)(6) Prior converted cropland 0.0053 No No 

B7ARTIRR 

(b)(7) Artificially irrigated area, including fields flooded 
for agricultural production, that would revert to upland 
should application of irrigation water to that area 
cease 0.0013 No No 

B8LPIART 

(b)(8) Artificial lake/pond constructed or excavated in 
upland or a non-jurisdictional water, so long as the 
artificial lake or pond is not an impoundment of a 
jurisdictional water that meets (c)(6) 0.028 No No 

B9DEPPIT 

(b)(9) Water-filled depression constructed/excavated 
in upland/non-jurisdictional water incidental to 
mining/construction or pit excavated in upland/non-
jurisdictional water to obtain fill/sand/gravel 0.0058 No No 

DRYLAND 

The review area is comprised entirely of dry land (i.e. 
There are no waters or water features, including 
wetlands, of any kind in the entire review area) 0.034 No No 

RHA10NAV 
RHA Non-tidal water is on the district's Section 10 
waters list 0.00045 No No 

(Continued next page) 



Table S2. Relabeling NWPR AJDs allows training of ex ante deep learning models. (Continued) 

      
Jurisdictional 

under  

  Definition 
Share of 

AJDs NWPR 
Ex ante deep 

learning 
  (1) (2) (3) (4) 

RHAB10STORM 

Rivers and Harbors Act Section 10 
water excluded from the CWA as a 
(b)(10) stormwater control feature 
constructed or excavated in upland 
or in a non-jurisdictional water to 
convey, treat, infiltrate, or store 
stormwater runoff 0.00010 No No 

RHAB1EXCLUDEDOT
H 

Rivers and Harbors Act Section 10 
water excluded from the CWA as a 
(b)(1) water or water feature that is 
not identified in (a)(1)-(a)(4) and 
does not meet the other (b)(1) sub-
categories 0.000016 No No 

RHAB1LPINOSCFLD 

Rivers and Harbors Act Section 10 
water excluded from the CWA as a 
(b)(1) lake/pond or impoundment 
that does not contribute surface 
water flow directly or indirectly to an 
(a)(1) water and is not inundated by 
flooding from an (a)(1)-(a)(3) water 
in a typical year 0.000016 No No 

RHAB1WETNONADJ 

Rivers and Harbors Act Section 10 
water excluded from the CWA as a 
(b)(1) non-adjacent wetland 0.0014 No No 

RHAB3EPHEMERAL 

Rivers and Harbors Act Section 10 
water excluded from the CWA as a 
(b)(3) ephemeral feature, including 
an ephemeral stream, swale, gully, 
rill, or pool 0.00032 No No 

RHAB6PCC 

Rivers and Harbors Act Section 10 
water excluded from the CWA as 
(b)(6) prior converted cropland 0.000016 No No 

RHATIDAL 
RHA Tidal water is subject to the 
ebb and flow of the tide 0.00075 No No 

Each row describes one NWPR resource type. Ex ante deep learning relabeled resource types appear in 
bold. Column (2) shows non-synthetic AJDs for each resource type as a share of all NWPR AJDs.



 
Table S3. Ex post and ex ante deep learning models project that Sackett regulates relatively few 
water resources.  

  

Naïve 
benchmark 

Geophysical   Deep learning 

  
Wetness 

(Gold) Connected   
Ex ante 
Sackett   

Ex 
post 

Sackett 
  (1) (2) (3)   (4)   (5) 
a General groups of points               
  All 4 million points 0.000 0.026 0.017   0.134   0.115 
  AJD test set 0.000 0.006 0.015   0.204   0.161 
                

b Rivers and streams               
  All (NHD all) 0.000 0.067 0.109   0.360   0.250 
  Perennial  0.000 0.122 0.194   0.502   0.348 
  Intermittent or ephemeral  0.000 0.033 0.065   0.232   0.138 
  None (not in NHD) 0.000 0.025 0.015   0.129   0.113 
                

c Wetlands               

  All (NWI palustrine) 0.000 0.165 0.109   0.314   0.279 

  Non-tidal wetlands 0.000 0.524 0.336   0.286   0.319 

  Emergent (NWI) 0.000 0.348 0.157   0.194   0.199 

  Forested (NWI) 0.000 0.330 0.278   0.291   0.284 

  None (not in NWI palustrine) 0.000 0.001 0.001   0.102   0.087 
                

d Rivers, streams, and wetlands             

  All (NWI all, NHD all) 0.000 0.161 0.107   0.311   0.275 

  None (not in NWI or NHD) 0.000 0.001 0.001   0.102   0.086 
                

e Other important groups of points             

  Cropland and pasture (NLCD) 0.000 0.008 0.004   0.098   0.082 

  Floodplains (NFIP) 0.000 0.179 0.124   0.353   0.333 

  Urban growth areas (ICLUS) 0.000 0.017 0.012   0.133   0.093 

  Urban developed (NLCD) 0.000 0.007 0.004   0.116   0.087 
  
Values represent share of points regulated. Columns (4)–(5) average calibrated probabilities. Column (1) 
describes a naïve model where no points are jurisdictional. Column (2) describes the median scenario from 
the original wetness model (1), “seasonally flooded.” Column (3) defines points as jurisdictional in 
“potentially regulated” NWI polygons that intersect with perennial or intermittent NHD flowlines. Column (4) 
describes the ex ante deep learning projection of Sackett, which relabels resource types in NWPR AJDs. 
Column (5) describes the ex post deep learning model of Sackett. (B)–(E) describe subsets of the four 
million prediction points. NHD includes areas within 5 m of perennial, intermittent, and ephemeral flowline 
feature codes (fcodes) 46006, 46003, and 46007. Non-tidal wetlands include wetlands analyzed in the 
original wetness model (27). NHD is National Hydrography Dataset, NWI is National Wetlands Inventory, 
NLCD is National Land Cover Dataset, NFIP is National Insurance Program, ICLUS is Integrated Climate 
and Land-Use Scenarios, DL is deep learning.  
  



Table S4. Ex ante and ex post deep learning outperform different wetness scenarios  

  
AUC F1 Precision Recall Accuracy MAE 
(1) (2) (3) (4) (5) (6) 

A All sites (N=2,777)             
1 Temporarily flooded 0.499 0.021 0.167 0.011 0.794 0.184 
2 Seasonally 
saturated 0.501 0.021 0.214 0.011 0.797 0.187 
3 Continuously 
saturated 0.498 0.007 0.118 0.004 0.798 0.191 
4 Seasonally flooded 0.498 0.007 0.118 0.004 0.798 0.191 
5 Seasonally 
flooded/saturated 0.498 0.004 0.083 0.002 0.799 0.193 
6 Semi-permanently 
flooded 0.500 0.004 0.250 0.002 0.802 0.196 
7 Intermittently 
exposed 0.501 0.004 0.500 0.002 0.803 0.197 
8 Permanently 
flooded 0.501 0.004 0.500 0.002 0.803 0.197 
9 Naïve  0.500 0.000 0.000 0.000 0.803 0.197 
10 Connected 0.512 0.065 0.463 0.035 0.802 0.183 
11 Ex ante DL 
(Sackett) 0.693 0.332 0.457 0.261 0.802 0.066 
12 Ex post DL 
(Sackett) 0.691 0.368 0.502 0.290 0.819 0.001 
              
B Non-tidal NWI (Emergent, Forested, Pond) (N=640)         
1 Temporarily flooded 0.502 0.030 0.250 0.016 0.800 0.181 
2 Seasonally 
saturated 

0.503 0.031 0.286 0.016 0.802 0.183 

3 Continuously 
saturated 

0.496 0.000 0.000 0.000 0.800 0.188 

4 Seasonally flooded 0.496 0.000 0.000 0.000 0.800 0.188 
5 Seasonally 
flooded/saturated 

0.497 0.000 0.000 0.000 0.802 0.189 

6 Semi-permanently 
flooded 

0.500 0.000 0.000 0.000 0.806 0.194 

7 Intermittently 
exposed 

0.500 0.000 0.000 0.000 0.806 0.194 

8 Permanently 
flooded 

0.500 0.000 0.000 0.000 0.806 0.194 

9 Naïve  0.500 0.000 0.000 0.000 0.806 0.194 
10 Connected 0.517 0.088 0.462 0.048 0.805 0.173 
11 Ex ante DL 
(Sackett) 

0.703 0.370 0.487 0.298 0.820 0.056 

12 Ex post DL 
(Sackett) 

0.724 0.424 0.568 0.339 0.825 0.003 

(Continued next page) 



 

Table S4. Ex ante and ex post deep learning outperform different wetness scenarios (continued) 

 
       

  
AUC F1 Precision Recall Accuracy MAE 
(1) (2) (3) (4) (5) (6) 

C Non-tidal wetlands (27) (N=36)           
1 Temporarily 
flooded 0.500 0.286 0.167 1.000 0.167 0.833 
2 Seasonally 
saturated 0.633 0.353 0.214 1.000 0.389 0.611 
3 Continuously 
saturated 0.417 0.174 0.118 0.333 0.472 0.306 
4 Seasonally 
flooded 0.417 0.174 0.118 0.333 0.472 0.306 
5 Seasonally 
flooded/saturated 0.400 0.111 0.083 0.167 0.556 0.167 
6 Semi-permanently 
flooded 0.533 0.200 0.250 0.167 0.778 0.056 
7 Intermittently 
exposed 0.567 0.250 0.500 0.167 0.833 0.111 
8 Permanently 
flooded 0.567 0.250 0.500 0.167 0.833 0.111 
9 Naïve  0.500 0.000 0.000 0.000 0.833 0.167 
10 Connected 0.483 0.000 0.000 0.000 0.806 0.139 
11 Ex ante DL 
(Sackett) 0.819 0.200 0.250 0.167 0.806 0.000 
12 Ex post DL 
(Sackett) 0.947 0.625 0.500 0.833 0.917 0.139 

MAE: mean absolute error in predicted share jurisdictional in US or state. AUC-ROC: Area under the 
receiver operating curve. F1: harmonic mean of precision and recall. Precision: TP / (TP + FP), where TP 
is the count of true positive predictions and FP is the count of false positive predictions. Recall: TP / (TP + 
FN), where FN is the count of false negative predictions. Accuracy: percent correct. Column (6) equals 
|mean(𝐽௜) − mean(𝐶௜)|, where 𝐽௜ represents AJD jurisdiction and 𝐶௜ represents model-predicted jurisdiction. 
Each panel describes jurisdiction predicted by scenarios analyzed in Gold (27). Each scenario indicates 
how "wet" a wetland must be to be protected under the Clean Water Act. In other words, in scenario 4, all 
AJDs within wetlands (27) at least as wet as "seasonally flooded" are predicted as WOTUS; all others are 
predicted as non-WOTUS. The median scenario ex-ante, Scenario 4, is used as the wetness model 
throughout the rest of the paper. (A), N=2,777. (B), N=640. (C), N=36. 



 

 

Table S5. For all rules, ex post deep learning performs well but individual input layers perform 
poorly.  
 
        
  AUC F1 Precision Recall Accuracy US N 
  (1) (2) (3) (4) (5) (6) (7) 
A Ex post deep learning, by rule               
  1. All rules 0.837 0.665 0.787 0.575 0.811 0.088 20,844 
  2. Sackett 0.691 0.368 0.502 0.290 0.819 0.001 2,777 
  3. Rapanos 0.864 0.761 0.737 0.786 0.819 0.005 10,187 
  4. NWPR 0.805 0.603 0.561 0.652 0.801 0.010 6,373 
  5. CWR 0.856 0.748 0.756 0.740 0.802 0.101 1,507 
                

B Individual input layers—Sackett               
  5. Wetland (NWI) 0.502 0.253 0.199 0.349 0.595 0.148 2,777 
  6. Stream (NHD) 0.492 0.058 0.146 0.036 0.768 0.148 2,777 
  7. Wetland or stream 0.499 0.253 0.196 0.354 0.587 0.158 2,777 
  8. Hydric soil (gNATSGO) 0.492 0.295 0.194 0.624 0.413 0.439 2,777 
  9. Water table <10m (gNATSGO) 0.494 0.130 0.179 0.102 0.731 0.085 2,777 
  10. Cropland and pasture (NLCD) 0.496 0.308 0.195 0.728 0.355 0.538 2,777 
  11. Urban developed (NLCD) 0.491 0.303 0.193 0.701 0.364 0.518 2,777 

 
(A), performance of ex post deep learning calibrated probabilities with thresholds optimized for 
performance for F1 in columns (2), (3), and (4), accuracy in columns (5), and national mean absolute error 
(MAE) in column (6). Column (1) depends on model calibrated probabilities and is independent of threshold 
choice. (B), forecasting based on individual layers on for Sackett AJDs. MAE: mean absolute error in 
predicted share jurisdictional in US or state. AUC-ROC: Area under the receiver operating curve. F1: 
harmonic mean of precision and recall. Precision: TP / (TP + FP), where TP is the count of true positive 
predictions and FP is the count of false positive predictions. Recall: TP / (TP + FN), where FN is the count 
of false negative predictions. Recall is not defined if a model makes no positive predictions. Accuracy: 
percent correct. Column (6) equals |mean(𝐽௜) − mean(𝐶௜)|, where 𝐽௜ represents AJD jurisdiction and 𝐶௜ 
represents model-predicted jurisdiction. Row 5 predicts regulation if within 5 m of a NWI wetland; row 6 if 
within 5 m of an NHD stream; row 7 if within 5 m of either an NWI wetland or NHD stream; row 8 if the area 
has a hydric soil according to the Gridded National Soil Survey Geographic Database (gNATSGO). Row 9 
predicts regulation if the water table is less than 10 meters deep, and no regulation everywhere else. Rows 
10 and 11 predict no regulation in cropland and pasture, and urban developed areas, respectively, and 
regulation everywhere else. NWPR is the Navigable Waters Protection Rule. CWR is the Clean Water 
Rule. 



 

 

Table S6. Wetness models project a wide range of jurisdiction. 

  

Tempora
rily 

flooded 

Season
ally 

saturate
d 

Continuo
usly 

saturated 

Season
ally 

flooded 

Season
ally 

flooded 
/saturat

ed 

Semi-
permane

ntly 
flooded 

Intermitte
ntly 

exposed 

Permane
ntly 

flooded 

  (1) (2) (3) (4) (5) (6) (7) (8) 
A General groups of 
points                 
  All 4 million points 0.049 0.036 0.030 0.026 0.010 0.008 0.003 0.003 
  AJD test set 0.013 0.01 0.006 0.006 0.004 0.001 0.001 0.001 
                  
B Rivers and streams                 
  All (NHD all) 0.129 0.077 0.070 0.067 0.020 0.012 0.003 0.003 
  Perennial  0.221 0.139 0.126 0.122 0.040 0.020 0.005 0.005 
  Intermittent or 
ephemeral  0.075 0.039 0.034 0.033 0.005 0.004 0.000 0.000 
  None (not in NHD) 0.047 0.036 0.030 0.025 0.010 0.008 0.003 0.003 
                  
C Wetlands                 
  All (NWI palustrine) 0.307 0.231 0.192 0.165 0.069 0.052 0.019 0.019 
  Non-tidal wetlands    
   (27) 0.994 0.742 0.622 0.524 0.213 0.163 0.059 0.059 
  Emergent (NWI) 0.546 0.401 0.376 0.348 0.118 0.099 0.013 0.013 
  Forested (NWI) 0.711 0.534 0.412 0.330 0.122 0.077 0.007 0.007 
  None (not in NWI 
palustrine) 0.004 0.002 0.002 0.001 0.000 0.000 0.000 0.000 
                  
D Rivers, streams, and wetlands               
  All (NWI all, NHD all) 0.300 0.226 0.188 0.161 0.067 0.051 0.019 0.018 
  None (not in NWI or 
NHD) 0.003 0.002 0.002 0.001 0.000 0.000 0.000 0.000 
                  
E Other important groups of 
points               
  Cropland and pasture 
(NLCD) 0.016 0.009 0.008 0.008 0.003 0.002 0.002 0.002 
  Floodplains (NFIP) 0.276 0.198 0.181 0.179 0.085 0.078 0.033 0.033 
  Urban growth areas 
(ICLUS) 0.034 0.023 0.018 0.017 0.005 0.004 0.002 0.002 
  Urban developed 
(NLCD) 0.012 0.008 0.007 0.007 0.002 0.001 0.001 0.001 

Each column shows one scenario from the Wetness model (1). Model numbers in (1) correspond to column 
numbers here. Table shows the share of points each framework estimates are regulated. Panels B through D 
describe subsets of the four million prediction points. NHD only refers to flowlines. NFIP is the National Flood 
Insurance Program and ICLUS is the Integrated Climate and Land Use Scenarios.



 

 

 
 

Table S7. Sackett regulates less than earlier CWA rules.  

  CWR 
 

Rapanos  NWPR  Sackett 
  (1) (2) (3) (4) 
A General groups of points         

  All 4 million points 0.230 0.179 0.138 0.115 

  AJD test set 0.402 0.383 0.246 0.161 

          

B Rivers and streams         

  All (NHD all) 0.524 0.463 0.427 0.249 

  Perennial  0.713 0.615 0.602 0.347 

  Intermittent or ephemeral  0.373 0.336 0.287 0.137 

  None (not in NHD) 0.225 0.173 0.133 0.112 

          

C Wetlands         

  All (NWI palustrine) 0.567 0.410 0.351 0.278 

  Non-tidal wetlands(27) 0.689 0.463 0.389 0.318 

  Emergent (NWI) 0.509 0.343 0.234 0.199 

  Forested (NWI) 0.702 0.455 0.400 0.284 

  None (not in NWI palustrine) 0.172 0.139 0.101 0.087 

          

D Rivers, streams, and wetlands         

  All (NWI all, NHD all) 0.561 0.407 0.349 0.275 

  None (not in NWI or NHD) 0.171 0.138 0.100 0.086 

          

E Other important groups of points         

  Cropland and pasture (NLCD) 0.147 0.124 0.098 0.082 

  Floodplains (NFIP) 0.611 0.459 0.386 0.333 

  Urban growth areas (ICLUS) 0.244 0.169 0.135 0.093 

  Urban developed (NLCD) 0.211 0.139 0.110 0.087 

Table shows the share of points each framework estimates are regulated. Columns (1)–(4) 
average calibrated probabilities from ex post deep learning. Column (1) describes regulation 
under the Clean Water Rule (CWR). Column (2) describes regulation under Rapanos. Column 
(3) describes regulation under NWPR. Column (4) duplicates column (5) from Table S3. (B)–(D) 
describe subsets of the four million prediction points. NHD only refers to flowlines. NFIP is the 
National Flood Insurance Program and ICLUS is the Integrated Climate and Land Use Scenarios. 

 
  



 

 

 
Table S8. Regulated stream miles and wetland acres, by state.  
 

      Stream Miles Regulated Wetland Acres Regulated 

State 

Total 
Stream 
Miles 

Total 
Wetland 

Acres 
Rapanos 
(share) 

Sackett 
(share) 

Difference 
Sackett - 
Rapanos 

Rapanos 
(share) 

Sackett 
(share) 

Difference 
Sackett - 
Rapanos 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
National 3,154,478 119,825,265 - - -705,047 - - -19,321,637 
                  
Alabama 72,650 4,043,348 0.49 0.35 -10,752 0.41 0.38 -109,170 
Arizona 139,281 262,281 0.16 0.09 -9,610 0.32 0.18 -36,457 
Arkansas 78,496 2,558,428 0.48 0.25 -18,525 0.39 0.30 -235,375 
California 173,028 2,789,804 0.40 0.15 -42,565 0.39 0.15 -694,661 
Colorado 93,255 1,522,952 0.28 0.14 -13,056 0.25 0.13 -184,277 
Connecticut 5,215 304,750 0.94 0.41 -2,717 0.84 0.19 -196,259 
Delaware 2,234 290,940 0.79 0.30 -1,097 0.59 0.30 -84,954 
Florida 22,385 12,681,770 0.76 0.60 -3,604 0.68 0.45 -2,916,807 
Georgia 64,833 6,396,737 0.45 0.36 -5,381 0.28 0.27 -6,397 
Idaho 94,753 1,119,249 0.45 0.38 -6,254 0.51 0.33 -194,749 
Illinois 67,074 1,271,986 0.60 0.18 -27,970 0.56 0.21 -443,923 
Indiana 24,066 1,008,100 0.51 0.16 -8,543 0.29 0.13 -160,288 
Iowa 67,717 1,014,174 0.62 0.17 -30,473 0.45 0.14 -323,522 
Kansas 118,236 1,349,856 0.30 0.11 -23,293 0.24 0.09 -206,528 
Kentucky 45,616 430,781 0.17 0.09 -3,786 0.23 0.16 -27,139 
Louisiana 43,096 8,092,819 0.59 0.59 -259 0.64 0.68 283,249 
Maine 24,974 2,569,961 0.73 0.18 -13,961 0.63 0.14 -1,256,711 
Maryland 10,263 863,198 0.88 0.43 -4,680 0.80 0.44 -308,162 
Massachusetts 7,273 775,106 0.75 0.23 -3,767 0.54 0.15 -302,291 
Michigan 47,861 7,712,081 0.86 0.36 -24,122 0.68 0.32 -2,814,909 
Minnesota 60,103 9,973,334 0.16 0.13 -1,623 0.09 0.09 -9,973 

Mississippi 77,386 4,534,181 0.40 0.32 -5,881 0.38 0.45 321,927 

Missouri 95,347 1,388,966 0.63 0.16 -44,813 0.43 0.18 -352,797 

Montana 166,847 1,589,844 0.28 0.23 -8,843 0.30 0.20 -163,754 

Nebraska 72,506 549,755 0.33 0.14 -13,269 0.30 0.14 -87,961 

Nevada 143,616 1,003,174 0.33 0.11 -30,878 0.44 0.18 -258,819 

New Hampshire 9,374 384,706 0.71 0.19 -4,790 0.55 0.12 -163,115 

New Jersey 7,128 1,019,092 0.90 0.40 -3,557 0.73 0.30 -440,248 

New Mexico 109,260 383,873 0.11 0.10 -983 0.14 0.12 -9,213 

New York 48,756 2,651,158 0.67 0.21 -22,428 0.43 0.13 -816,557 
 (Continued next page)  



 

 

Table S8. Regulated stream miles and wetland acres, by state. (Continued) 
 
North Carolina 56,673 4,679,517 0.92 0.50 -23,916 0.84 0.50 -1,600,395 
North Dakota 59,514 2,442,160 0.45 0.24 -12,379 0.18 0.11 -180,720 
Ohio 54,736 715,219 0.36 0.11 -13,465 0.27 0.13 -99,415 
Oklahoma 75,615 1,274,713 0.67 0.19 -35,766 0.56 0.22 -432,128 
Oregon 102,984 1,803,096 0.46 0.26 -20,185 0.50 0.22 -497,655 
Pennsylvania 51,477 588,835 0.77 0.31 -23,782 0.72 0.35 -219,047 

Rhode Island 978 86,061 0.88 0.19 -679 0.64 0.14 -43,203 
South 
Carolina 29,372 4,238,935 0.82 0.48 -9,898 0.67 0.39 -1,191,141 
South Dakota 96,965 3,529,693 0.54 0.24 -29,283 0.27 0.13 -465,919 
Tennessee 59,244 1,148,777 0.26 0.13 -7,820 0.36 0.23 -153,936 
Texas 176,194 5,551,483 0.56 0.25 -54,973 0.59 0.36 -1,276,841 
Utah 82,724 624,397 0.44 0.15 -23,494 0.37 0.24 -83,045 
Vermont 7,100 287,628 0.47 0.11 -2,542 0.29 0.09 -56,375 
Virginia 49,280 1,682,396 0.83 0.43 -19,909 0.79 0.55 -408,822 
Washington 68,964 1,297,395 0.42 0.23 -13,034 0.45 0.29 -206,286 

West Virginia 30,572 81,858 0.40 0.13 -8,193 0.57 0.19 -30,942 
Wisconsin 53,370 7,610,528 0.34 0.23 -5,550 0.14 0.13 -22,832 
Wyoming 106,082 1,646,169 0.25 0.17 -8,699 0.25 0.16 -153,094 

 
Total stream miles in column (2) is from NHD stream and river flowline features. Total wetland 
acres in column (3) is from NWI. Regulation rates in columns (3), (4), (6), and (7) display 
calibrated probabilities from ex post deep learning (Sackett and Rapanos), applied to the subset 
of four million prediction points that are within 5 meters of NHD or NWI features. The difference 
in column (5) is measured in stream miles, and in column (8) in wetland acres. 
 
 
 
 
 
  



 

 

 
Table S9. Recent rules deregulate drinking water sources.  
 

  Rapanos   NWPR   Sackett   

  (1)   (2)   (3)   

A Share Regulated             

  1. All points 0.243   0.187   0.144   

  2. NHD or NWI points 0.523   0.448   0.366   

  3. NHD points 0.628   0.578   0.350   

  4. NWI points 0.525   0.449   0.369   

              
B Pop. Served 
Weighted             

  1. All points 0.262   0.180   0.139   

  2. NHD or NWI points 0.593   0.463   0.391   

  3. NHD points 0.637   0.565   0.355   

  4. NWI points 0.596   0.465   0.394   
 
 
Columns show the results from ex post deep learning models fine-tuned on each CWA rule. A 
12-digit hydrologic unit code (HUC12) or subwatershed is the finest polygon delineation of 
watershed boundaries the US Geological Survey defines, corresponding to about 80,000 
HUC12s. This table considers active 2019 community water systems (CWS). (A), share of 
prediction points within HUC12 areas that serve as drinking water inputs for an active 2019 
CWS predicted as jurisdictional under each regime. (B), same share weighted by the population 
served by each CWS. NWPR is the Navigable Waters Protection Rule. 
 
  



 

 

 
Table S10. Sackett divides AJDs into resource types corresponding to different legal 
categorizations of waters.  
 

  Definition 
Share of 

AJDs 

Share 
juris-

dictional 
  (1) (2) (3) 
A Pre-2015-Post-Sackett       

A1.TNW-404 (a)(1) Traditional Navigable Water (Section 404 Only) 0.00076 1.00 

A1.TNW-404.10 

(a)(1) Traditional Navigable Water, also subject to 
Sections 9 or 10 of the Rivers and Harbors Act (Section 
10/404) 0.0027 1.00 

A2.INTSTATE-404 (a)(2) Interstate Waters (Section 404 Only) 0.00025 1.00 

A4.IMPDT-404 
(a)(4) Impoundments of waters otherwise defined as 
"waters of the United States" 0.0052 1.00 

A5.TRIB-404 

(a)(5) Tributaries of waters identified in paragraph (a)(1) 
through (4), where the tributary is a relatively permanent, 
standing or continuously flowing body of water  0.094 1.00 

A7-AJD.WETL-404 
(a)(7) Wetland adjacent to a non-wetland water identified 
in (a)(1) - (a)(6) 0.095 1.00 

DRY.LAND 

Dry Land - The review area is comprised entirely of dry 
land (i.e. there are no aquatic features, including 
wetlands, of any kind in the entire review area) 0.055 0.00 

EXCL-PCC (a)(8) Prior converted cropland 0.0027 0.00 

EXCL-WTS 

(a)(8) Waste treatment systems, including treatment 
ponds or lagoons, designed to meet the requirements of 
the Clean Water Act 0.0081 0.00 

NON-JD - PREAMBLE - 
ART.IRR 

Preamble water - Artificially irrigated areas which would 
revert to upland if the irrigation ceased 0.0024 0.00 

NON-JD - PREAMBLE - 
ART.LAKE.POND 

Preamble water - Artificial lake/pond created by 
excavating/diking dry land, used exclusively for purposes 
such as stock watering, irrigation, settling basins, or rice 
growing 0.04 0.00 

NON-JD - PREAMBLE - 
ART.REF.SWIM.ORN 

Preamble water - Artificial reflecting or swimming pools or 
other small ornamental bodies of water created by 
excavating and/or diking dry land to retain water for 
primarily aesthetic reasons 0.0023 0.00 

NON-JD - PREAMBLE - 
NON-TIDAL.DITCH-
DRY.LAND 

Preamble water -Non-tidal drainage and irrigation ditches 
excavated on dry land 0.0033 0.00 

NON-JD - PREAMBLE - 
WATERFILLED.DEP-PITS 

Preamble water - Waterfilled depression created in dry 
land and pits excavated in dry land unless and until the 
operation is abandoned and resulting body of water meets 
definition of WOTUS 0.012 0.00 

 (Continued next page) 
  



 

 

Table S10. Sackett divides AJDs into resource types corresponding to different legal 
categorizations of waters. (Continued) 

  Definition 
Share of 

AJDs 

Share 
juris-

dictional 
  (1) (2) (3) 

NON-JD - 
RAPANOS.GUIDE - DITCH 

Rapanos Guidance - Ditches (including roadside ditches) 
excavated wholly in and draining only uplands and that do 
not carry a relatively permanent flow of water  0.09 0.00 

NON-JD - 
RAPANOS.GUIDE - 
SWALE.EROSION 

Rapanos Guidance - Swales or erosional features (e.g., 
gullies, small washes, characterized by low volume, 
infrequent, or short duration flow) 0.073 0.00 

NON-WOTUS-
LAKE.POND.NEGATIVE-A5 

NON-WOTUS - Intrastate Lake or Pond that is not a 
tributary to a water identified in paragraphs (a)(1) through 
(4) 0.023 0.00 

NON-WOTUS-
STREAM.NEGATIVE-A5 

NON-WOTUS - Intrastate Stream that is not a tributary to 
a water identified in paragraphs (a)(1) through (4) 0.021 0.00 

NON-WOTUS-
TRIB.NEGATIVE-A5 

NON-WOTUS: Tributary to a water identified in 
paragraphs (a)(1) through (4), where the tributary is not a 
relatively permanent, standing or continuously flowing 
body of water 0.19 0.00 

NON-WOTUS-
WETL.NEGATIVE-A7 

NON-WOTUS: Wetland that is not adjacent to a water 
identified in paragraph (a)(1) through (6)  0.28 0.00 

RHA-10NAV 
RHA - Non-tidal water is on the district's Section 10 
waters list (Section 10 Only) 0.00025 1.00 

RHA-10TIDAL 
RHA - Tidal water is subject to the ebb and flow of the tide 
(Section 10 Only) 0.00013 1.00 

        

B Amended-2023-Rule       
A1-1.TNW-404 (a)(1)(i) Traditional Navigable Water (Section 404 Only) 0.0083 1.00 

A1-1.TNW-404.10 

(a)(1)(i) Traditional Navigable Water, also subject to 
Sections 9 or 10 of the Rivers and Harbors Act (Section 
10/404) 0.0033 1.00 

A1-2.TERSEAS-404.10 
(a)(1)(ii) Territorial Seas, also subject to Sections 9 or 10 
of the Rivers and Harbors Act (Section 10/404) 0.0001 1.00 

A1-3.INTSTATE-404 (a)(1)(iii) Interstate Waters (Section 404 Only) 0.0002 1.00 
A2.IMPDT-404 (a)(2) Jurisdictional Impoundment (Section 404 Only) 0.0027 1.00 

A3.TRIB-404 (a)(3) Tributary (Section 404 Only) 0.061 1.00 

A4-1.ADJ.WET.A1-
INTSTATE-404 

(a)(4)(i) Adjacent Wetland, adjacent to (a)(1))(iii) Interstate 
Water 0.0006 1.00 

A4-1.ADJ.WET.A1-
TERSEAS-404 

(a)(4)(i) Adjacent Wetland, adjacent to (a)(1)(ii) Territorial 
Sea 0.0002 1.00 

A4-1.ADJ.WET.A1-TNW-404 (a)(4)(i) Adjacent Wetland, adjacent to (a)(1)(i) TNW 0.013 1.00 

A4-2.ADJ.WET.A2&amp;A3-
404 

(a)(4)(ii) Adjacent Wetland, adjacent to a relatively 
permanent paragraph (a)(2) Impoundment or (a)(3) 
Tributary (Section 404 Only) 0.067 1.00 

 (Continued next page) 
  



 

 

Table S10. Sackett divides AJDs into resource types corresponding to different legal 
categorizations of waters. (Continued) 

  Definition 
Share of 

AJDs 

Share 
juris-

dictional 
  (1) (2) (3) 

A5.INTSTATE.LKPND-404 

(a)(5) Intrastate Lake or Pond not Identified in Paragraphs 
(a)(1) through (4), that is a relatively permanent, standing 
or continuously flowing body of water (Section 404 Only) 0.0023 1.00 

B1-EXCL-WTS (b)(1) Waste Treatment System (Excluded) 0.0088 0.00 

B2-EXCL-PCC 
(b)(2) Wetland Excluded as Prior Converted Cropland 
designated by USDA (Excluded) 0.0007 0.00 

B3-EXCL-DITCH 

(b)(3) Ditches (including roadside ditches) excavated 
wholly in and draining only dry land and that do not carry a 
relatively permanent flow of water (Excluded) 0.11 0.00 

B4-EXCL-ART.IRR 
(b)(4) Artificially irrigated areas that would revert to dry 
land if the irrigation ceased (Excluded) 0.0022 0.00 

B5-EXCL-ART.LK 
(b)(5) Artificial lakes or ponds created in dry land, used 
exclusively for specific purposes (Excluded) 0.031 0.00 

B6-EXCL-ART.REF 

(b)(6) Artificial reflecting/swimming/ornamental pools; 
created by excavating or diking dry land to retain water for 
primarily aesthetic reasons (Excluded) 0.0036 0.00 

B7-EXCL-WTF.DEP 

(b)(7) Waterfilled depressions created in dry land 
incidental to construction activity and pits excavated in dry 
land, until abandoned (Excluded) 0.012 0.00 

B8-EXCL-SWAL.EROS 

(b)(8) Swales and erosional features (e.g., gullies, small 
washes) characterized by low volume, infrequent, or short 
duration flow (Excluded) 0.027 0.00 

DRY.LAND 

Dry Land - The review area is comprised entirely of dry 
land (i.e. there are no aquatic features, including 
wetlands, of any kind in the entire review area) 0.035 0.00 

NON-WOTUS-INTSTATE-
LKPND.NEGATIVE.A5 

NON-WOTUS - Intrastate lake or pond not identified in 
paragraphs (a)(1 - 4) that is not relatively permanent or 
does not have a continuous surface connection to (a)(1) 
or (3) water 0.015 0.00 

NON-WOTUS-INTSTATE-
STRM.NEGATIVE.A3 

NON-WOTUS - Intrastate stream that does not connect to 
a paragraph (a)(1) or (a)(2) water 0.011 0.00 

NON-WOTUS-
TRIB.NEGATIVE.A3 

NON-WOTUS - Tributary evaluated under (a)(3) and 
determined to not be a relatively permanent water with a 
continuous surface connection to paragraph (a)(1) or 
(a)(3) water 0.18 0.00 

NON-WOTUS-
WET.NEGATIVE.A4 

NON-WOTUS - Wetland that does not have a continuous 
surface connection to a paragraph (a)(1) water or to a 
relatively permanent paragraph (a)(2) impoundment or 
paragraph (a)(3) tributary 0.4 0.00 

RHA-10NAV 
RHA - Non-tidal water is on the district's Section 10 
waters list (Section 10 Only) 0.0003 1.00 

  



 

 

Each row lists a Sackett resource type from the AJD data. Column (1) describes the resource 
type, column (2) lists the share of all Sackett AJDs the resource type accounts for, and column 
(3) shows the share of the resource type AJDs that are jurisdictional. 
 
 
  



 

 

Table S11. Rapanos divides AJDs into resource types corresponding to different legal 
categorizations of waters.  
 

        

    Share of 
AJDs 

Share 
jurisdictional   Definition 

  (1) (2) (3) 

IMPNDMNT Impoundment of Jurisdictional Waters  0.011 0.71 
ISOLATE Isolated (interstate or intrastate) waters 0.34 0.000025 

NRPW 
Non-relatively Permanent Water that flows directly or indirectly 
into Traditional Navigable Water 0.052 0.63 

NRPWW 
Wetland Adjacent to Non-relatively Permanent Water that flows 
directly or indirectly into Traditional Navigable Water 0.029 0.87 

RPW 
Relatively Permanent Water that flows directly or indirectly into 
Traditional Navigable Water 0.098 1.00 

RPWWD 
Wetlands Directly Abutting Relatively Permanent Water that 
flows directly or indirectly into Traditional Navigable Water 0.11 1.00 

RPWWN 

Wetlands Adjacent but not Directly Abutting Relatively 
Permanent Water that flows directly or indirectly into Traditional 
Navigable Water 0.037 0.94 

TNW Traditional Navigable Water  0.032 1.00 

TNWRPW Traditional Navigable Water - Relatively Permanent Water 0.0007 0.99 

TNWW Wetlands Adjacent to Traditional Navigable Water  0.038 1.00 

UPLAND Uplands  0.26 0.000064 
  
Each row lists a Rapanos resource type from the AJD data. Column (1) describes the resource 
type, column (2) lists the share of all Rapanos AJDs the resource type accounts for, and column 
(3) shows the share of the resource type AJDs that are jurisdictional. 
 
 

 
  



 

 

Table S12. Tiner (2003) categorizes many types of isolated wetlands.  
 
  Geographic Region 
  (1) 
Tiner (2003) Wetland Types   
Alvar wetlands Level IV ecoregions 50ab (Cheboygan Lake Plain) 
Channeled Scablands wetlands Level IV ecoregion 10a (Channeled Scablands) 
Cypress domes None -- area is too large/no specific agreement 
Delmarva pothole wetlands Level IV ecoregion 63f (Delmarva uplands) 
Desert spring wetlands Level III ecoregions 14 (Mojave Basin and Range) 
Fens None -- area is too large/no specific agreement 
Geysers None -- area is too large/no specific agreement 
Inactive floodplain wetlands None -- area is too large/no specific agreement 
Interdunal and intradunal wetlands None -- area is too large/no specific agreement 
Kettle hole wetlands None -- area is too large/no specific agreement 
Mid- and South Atlantic Wetlands Mid- and South Atlantic Wetlands 
Natural ponds None -- area is too large/no specific agreement 
Playas Level III ecoregion 25 (High Plains) 
Prairie potholes Mann (1974) Prairie Pothole Region 
Rainwater basin wetlands Level IV ecoregion 27f (Rainwater Basin Plains) 
Rock pool wetlands None -- area is too large/no specific agreement 

Salt flats and salt lake wetlands Level III ecoregions 13 (Central Basin and Range) 

Sandhills wetlands Level III ecoregion 44 (Nebraska Sand Hills) 

Seepage slope wetlands None -- area is too large/no specific agreement 

Sinkhole wetlands Level IV ecoregions 69c (Greenbriar Karst), 71e 

Tarn wetlands None -- area is too large/no specific agreement 

Volcanic-formed wetlands Level IV ecoregions 1d (Coast Range Volcanics) 
  
Table shows isolated wetland types from Tiner (15). Column (1) shows mapping to geographic 
regions. 
 
 
 
  



 

 

Table S13. We generate synthetic non-jurisdictional training data within several 
categories of isolated wetlands from Tiner (15).  
 
  Geographic Region Tiner (15) Wetland Type(s) 
  (1) (2) 

Cowardin Code   

PABG Palustrine wetland, aquatic bed, intermittently exposed Prairie potholes 

PEM1A 
Palustrine emergent persistent wetland, temporarily 
flooded Playas; prairie potholes 

Pf Palustrine wetland, farmed Prairie potholes 

PUBFx 
Palustrine wetland, unconsolidated bottom, semi-
permanently flooded, excavated Playas; prairie potholes 

PUBHx 
Palustrine wetland, unconsolidated bottom, permanently 
flooded, excavated West Coast vernal pools 

R4SBJ Riverine wetland, surface flooding, intermittent 
Desert spring wetlands; salt flats 
and salt lake wetlands 

  
Table shows Cowardin codes (4) selected for non-jurisdictional synthetic training data, by Tiner 
(15) wetland type. See Section A.3 under “Synthetic Non-Jurisdictional Data: Isolated 
Wetlands.” Column (1) describes associated geographic regions and column (2) lists associated 
Tiner wetland types. 
  



 

 

 
Table S14. Optimal thresholds for each metric allow calculation of model performance.  
 

    Performance Metrics 

                MAE 

Metric 
optimized Threshold AUC F1 Precision Recall Specificity Accuracy US State 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
MAE 0.173 0.691 0.393 0.392 0.394 0.850 0.760 0.001 0.153 
State 
MAE 0.242 0.691 0.368 0.502 0.290 0.929 0.803 0.083 0.182 
Accuracy 0.577 0.691 0.297 0.635 0.193 0.973 0.819 0.137 0.205 
F1 Score 0.242 0.691 0.368 0.502 0.290 0.929 0.803 0.083 0.182 

 
Table shows ex post deep learning (Sackett) model performance. In each row, we choose the 
threshold which maximizes the performance metric indicated. AUC does not depend on 
threshold choice so it is identical across cases. Column (1) lists the resulting threshold. 
Columns (2)–(9) show all performance metrics. Values in bold show the optimized performance 
values. Selection of thresholds in column (1) uses the validation set. Performance metrics in 
columns (2)–(9) use the Sackett test set AJDs. MAE is mean absolute error.  
 



 

 

Table S15. Input layers build on the inputs from Table S3 of Greenhill et al. 2025 

Dataset Input layer Variable definition  
Data 
type 

Spatial 
Resolution 

Source 

National 
Agriculture 
Imagery Program 
(NAIP) 

Red band Red channel visible light 

Raster 0.6 to 1.0 meters (18) 
Blue   Blue channel visible light 

Green  Green channel visible light 

NIR Near-infrared light 

National Wetlands 
Inventory (NWI) 

Wetland 
type 

NWI wetland types: Estuarine and 
Marine Deepwater, Estuarine and 
Marine Wetland, Freshwater 
Emergent Wetland, Freshwater 
Forested/Shrub Wetland, 
Freshwater Pond, Lake, Riverine, 
Other 

Vector 1:250,000 (16) 

National 
Hydrography 
Dataset (NHD) 
Plus V2 

FCode 
Water feature type (e.g., perennial 
stream, intermittent stream, 
coastline) 

Vector 1:100,000 (14) 

Path length NHD flowline distance  

High flow 

Maximum flow for this water 
segment over a sequential 3-month 
period, using NHD Value Added 
Attributes Enhanced Runoff 
Method (EROM) long-term mean 
flow estimates for each month. 

Low flow 
Minimum flow for this water 
segment over a sequential 3-month 
period, using EROM. 

Stream 
order 

Hierarchy of streams from the 
source (or headwaters) 
downstream  

USGS 3-
Dimensional 
Elevation Program 
(3DEP) 

Elevation Height above sea-level  Raster 10 meters (29) 

US EPA 
Ecoregions 

Level IV 
Ecoregion 

Ecoregions are areas where 
ecosystems (and the type, quality, 
and quantity of natural resources) 
are generally similar. There are 967 
level IV ecoregions in the United 
States.  

Vector 1:250,000 (22) 

(Continued next page) 
  



 

 

 

Dataset Input layer Variable definition  
Data 
type 

Spatial 
Resolution 

Source 

Parameter-
elevation 
Regressions on 
Independent 
Slopes Model 
(PRISM) 30-year 
Normals 

Precipitation Average annual total precipitation 

Raster 4 kilometers (21) 

 Minimum 
temperature 

Daily minimum temperature, averaged 
over 1990-2021 

  Maximum 
temperature 

Daily maximum temperature, 
averaged over 1990-2021 

  Mean 
temperature 

Daily mean temperature, averaged 
over 1990-2021 

  

Mean dew 
point 
temperature 

Daily mean dew point temperature 
(the temperature to which air must be 
cooled to become saturated with 
water vapor), averaged over 1990-
2021 

  
Minimum 
vapor 
pressure 
deficit (VPD) 

Minimum VPD (difference between 
the amount of moisture in the air and 
how much moisture the air can hold), 
averaged over 1990-2021 

  
Maximum 
vapor 
pressure 
deficit (VPD) 

Maximum VPD (difference between 
the amount of moisture in the air and 
how much moisture the air can hold), 
averaged over 1990-2021 

  Solar 
radiation 
(clear sky) 

Total daily global shortwave solar 
radiation received on a horizontal 
surface, averaged over 1990-2021 

  Solar 
radiation 
(total) 

Total solar radiation incident on a 
horizontal surface), averaged over 
1990-2021 

  
Cloudiness 

Atmospheric transmittance 
(cloudiness), averaged over 1990-
2021 

US Army Corps 
Regulatory 
Boundaries 

District 
codes 

Each ACE district is assigned a 
unique value.  

Point 1:250,000 (30) 
Distance to 
headquarters 

We calculate the distance from each 
point to the district headquarters.   

(Continued next page)  



 

 

Dataset Input layer Variable definition  
Data 
type 

Spatial 
Resolution 

Source 

Gridded National 
Soil Survey 
Geographic 
Database 
(gNATSGO) 

Taxonomic 
class 

The Soil Taxonomy subgroup and 
family for a soil.   

Raster 30 meters (20) 

Hydric rating Is the map unit “hydric soil”?  

Flooding 
frequency 

The annual probability of a flood event 
expressed as a class. 

Ponding 
frequency 

The number of times ponding occurs 
over a year 

Water table 
depth   

The shallowest depth to a wet soil 
layer 

National Land 
Cover Database 
(NLCD) 

Landcover 

The NLCD has 20 land cover classes: 
Open water, ice/snow, four classes of 
developed land (open, low, medium, 
and high), barren, three forest classes 
(evergreen, deciduous, mixed), two 
scrub classes (dwarf, shrub), four 
herbaceous classes (grassland, 
sedge, moss, lichen), two agricultural 
classes (pasture/hay, cultivated), and 
two wetland classes (woody, 
emergent herbaceous)  

Raster 30 meters (19) 

Coastal Change 
Analysis Program 
(CCAP) 

Landcover 

C-CAP has 25 land cover classes: 
background, unclassified, developed 
(high intensity), developed (medium 
intensity), developed (low intensity), 
developed (open space), cultivated 
crops, pasture/hay, 
grassland/herbaceous, deciduous 
forest, evergreen forest, mixed forest, 
scrub/shrub, palustrine forested 
wetland, palustrine scrub/shrub 
wetland, palustrine emergent wetland 
(persistent), estuarine forested 
wetland, estuarine scrub/shrub 
wetland, estuarine emergent wetland, 
unconsolidated shore, barren land, 
open water, palustrine aquatic bed, 
estuarine aquatic bed, tundra, 
perennial ice/snow 

Raster 30 meters (23) 

(Continued next page) 
  



 

 

 

Dataset Input layer Variable definition  
Data 
type 

Spatial 
Resolution 

Source 

Topologically 
Integrated 
Geographic 
Encoding and 
Referencing 
System 
(TIGER)/Line State 
boundaries 

State codes Each state is assigned a unique value  Vector 1:250,000 (31) 

CWA Approved 
Jurisdictional 
Determinations 

WOTUS rule  
Three WOTUS rules: Rapanos, CWR, 
NWPR 

Point -- (32) 

 


