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Abstract

Projecting the effects of proposed policy reforms is challenging because no outcome data exist for
regulations that governments have not yet implemented. We propose an ex ante deep learning
framework that can project effects of proposed reforms by mapping outcomes observed under past
regulations onto the legal criteria of proposed future policies (i.e., by “relabeling”). We apply this
framework to study changes in jurisdiction of the US Clean Water Act (CWA). We compare our
ex ante deep learning projection of jurisdiction under the Supreme Court’s Sackett decision against
widely used projections from domain experts. Ex ante machine learning generates exceptional
performance improvements over the leading domain expert model that the US Environmental
Protection Agency currently uses, with 65 times more accurate identification of jurisdictional sites.
We also develop an ex post deep learning model trained with data after policy implementation. Ex
post deep learning performs best. Sackett deregulates one-third of all previously regulated US
waters, particularly floodplains and pristine fish habitats, totaling 700,000 deregulated stream
miles and 17 million deregulated wetland acres. Deep learning can effectively project
consequences of far-reaching regulatory reforms before they are implemented, when projections
are both most uncertain and most useful.

Significance Statement

Evaluating proposed regulations before implementation is essential for effective policymaking.
Analysts, however, cannot observe how untested policies affect outcomes, which makes it
challenging to produce accurate evaluations of such policies. This paper introduces a deep learning
framework that addresses this challenge by modifying outcomes observed under past regulations
in ways that reflect proposed regulations. This strategy allows projections of the real-world
impacts of a potential policy change before it is implemented. We use this approach to predict the
effects of the Supreme Court’s 2023 Sackett decision, which restricts jurisdiction of the US Clean
Water Act, using only information available before policy implementation. Ex ante deep learning
dramatically outperforms widely used models created by geophysical scientists in identifying both
regulated and unregulated waters. Separately, we also provide the first ex post national assessment
of Sackett, “one of the most impactful environmental decisions in the Court’s history,” and the
current Clean Water Act rule. Sackett removes federal protection from roughly one-third of
previously regulated streams and wetlands, including areas with important ecological functions.
These results demonstrate that deep learning can dramatically improve analysis of policies that are
proposed but not yet implemented.
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Evaluating proposed policy reforms is a critical task. Such evaluations can shape how
policymakers choose between alternative policy proposals and how firms, citizen groups, and other
stakeholders adapt to policy change. Government, academic, and private sector analysts generate
numerous such evaluations annually. The stakes are high—regulatory reforms can generate
hundreds of billions of dollars in annual benefits, though also enormous costs (1).

Projecting effects of proposed policy reforms is challenging because such forecasts are made
before a policy is implemented, when a policy’s impact is most uncertain. Because no outcome
data exist for proposed policies, forecasting their effects typically relies on domain experts like
scientists, engineers, and economists. The challenge of evaluating proposed policies when the
outcomes are not yet observed has led to the concern that the existing evaluation system is “broken,
... largely based on faith, rather than evidence” (2).

We develop a methodology that provides one of the first deep learning projections of a proposed
regulation’s effects. Analysts increasingly use deep learning to interpret existing energy,
environmental, financial, health, judicial, and labor market regulations ex post (3—6), though
largely not to evaluate proposed reforms. To address the absence of data on outcomes under
proposed policies, we take data on outcomes under past policies and change (“relabel”) these
outcomes in ways that characterize proposed rules. We then train a deep learning algorithm that
predicts regulation under the proposed rules, as captured by the relabeled outcomes. We compare
performance of this ex ante deep learning projection against published ex ante projections from
domain experts that rely on geophysical models. Separately, we develop an ex post deep learning
model to describe a policy’s effects after it is implemented and outcomes are observed, so that we
can compare ex ante against ex post analysis.

We apply this methodology to study recent and ongoing reforms to the 1972 US Clean Water Act
(CWA), the cornerstone of federal water pollution control. The CWA restricts water pollution
discharged to the “Waters of the United States” (WOTUS) but does not enumerate which streams
and wetlands this phrase covers. To determine whether the CWA protects a site (e.g., a parcel
where a developer hopes to build a factory), a developer can ask the Army Corps of Engineers
(USACE) to evaluate the site and issue an Approved Jurisdictional Determination (AJD),
indicating whether the CWA regulates the site. AJDs are the only legally binding decisions
describing CWA jurisdiction at the site level and therefore provide the natural outcome for our
empirical analysis. For jurisdictional sites, a developer may request a USACE wetland permit
describing conditions required to comply with the CWA.

Many stakeholders argue that CWA jurisdiction and its recent reforms are costly and uncertain.
Microsoft’s President summarized these wetland permits in congressional testimony as the
“number 1 challenge” in data center development (7). A legal expert described courts modifying
the CWA as sometimes “flying blind” (8). Media describe the regulatory landscape as “hazy” and
“chaos” (9). Our analysis highlights the potential of ex ante deep learning projections to reduce
the uncertainty associated with large policy reforms in this setting. Our analysis also responds to
a call by USEPA and USACE (10) for evidence on whether machine learning could provide an
“appropriate alternative” to geophysical models as a tool for governments to project effects of
proposed regulations.
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In addition to implementing ex ante deep learning, we use 200,000 AJDs to develop and train the
ex post Clean Water Act Analysis of Regulation (CLEAR) deep learning model. This provides the
first ex post national quantitative analysis of jurisdictional coverage under the Supreme Court’s
Sackett ruling, “one of the most impactful environmental decisions in the Court’s history” (11).

Compared to algorithmic analysis of earlier CWA regulation (6), our deep learning models study
new questions including projecting effects of proposed regulations, analyzing Sackett, and
studying floodplains, fish habitat quality, and other ecosystem services. Our deep learning models
also implement methodological advances including the generation and use of synthetic training
data, fine tuning models on each CWA rule, fusing image and tabular data, calibrating model
scores, and choosing optimal decision thresholds (SI Appendix, Sections A.1, A.2, A.3, and A.7).

CWA Background

Over the past decade, CWA jurisdiction has changed repeatedly due to alternating administrative
rules and Supreme Court decisions. “Regulatory ping pong” (12, 13) under the CWA—frequent
and large changes in rules between administrations and courts—includes six rules in the last
decade, plus other rules under discussion or implementation (14). In the Supreme Court’s 2006
Rapanos case, Justice Kennedy’s concurring opinion found that to be jurisdictional under the
CWA, a stream, wetland, or other water body required a “significant nexus,” i.e., a biological,
physical, or chemical connection to traditional navigable waters. The 2016 Clean Water Rule
(CWR) primarily clarified Rapanos, USEPA and USACE repealed the CWR in 2019. The 2020
Navigable Waters Protection Rule (NWPR) restricted jurisdiction to relatively permanent waters
with a continuous surface water connection to traditional navigable waters. NWPR effectively
excluded ephemeral streams and isolated wetlands. The 2023 Rule, litigated then enjoined in some
areas, closely resembled Rapanos. Sackett required jurisdictional waters to have a continuous
surface water connection to traditional navigable waters and excluded certain wetlands separated
from navigable waters by barriers. Due to litigation, in September 2023, USEPA implemented two
versions of Sackett in different states, which our analysis combines given their similarity. In March
2025, USEPA and USACE issued revised Sackett guidance, prompting extensive debate, including
46,042 public comments (15). In November 2025, USEPA and USACE proposed a rule to further
limit CWA jurisdiction. The PERMIT Act, which the US House passed in December 2025 with
bipartisan support, rewrites the CWA to resemble Sackett, though further excludes groundwater

(16).
Predictive Models of CWA Jurisdiction

We consider a series of models predicting which water resources each CWA rule regulates. As a
benchmark, we compare all models’ performance against the naive prediction that no sites are
jurisdictional.

As in climate science, a “projection” considers an assumed future policy scenario, such as a
proposed CWA rule, and quantitatively describes its effects. As in machine learning, a “prediction”
reflects a model’s assessment of what a rule regulates (17).

Geophysical Models. We consider two geophysical models that are widely used by domain
experts, which both assume that water resources with certain attributes in existing stream and
wetland maps define CWA jurisdiction. Domain experts choose which characteristics in the maps
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define jurisdiction. USEPA and USACE once described this type of geophysical model as “highly
unreliable ... based on stream and wetland datasets that were not created for regulatory purposes
and have significant limitations...” (18). Nonetheless, such geophysical models are prominent in
research (19-21), underpin prominent Supreme Court briefs (22), guide current USEPA and
USACE planning (23), and receive extensive media attention (24-26). SI Appendix Section A.1
provides details.

Model 1 (Wetness Geophysical Model). The “Wetness” model (19) assumes that non-
tidal wetlands that the National Wetlands Inventory (NWI) lists as not inundated a certain
share of the year lose jurisdiction under Sackett.

Model 2 (Connected Geophysical Model). The “Connected” model (20, 21) assumes that
wetlands in the NWI that intersect a perennial or intermittent stream in the National
Hydrography Dataset (NHD) are jurisdictional.

NWI and NHD are leading national maps of wetlands and streams, though both have well-
documented errors of inclusion and exclusion (18, 27-29).

Deep Learning Models. We also consider approaches that take AJDs from past CWA rules and
train a deep learning model to predict their jurisdictional status. We then use the trained algorithm
to predict jurisdiction at any US location under each CWA rule.

Model 3 (Ex Ante Deep Learning Model). Our ex ante deep learning model predicts
jurisdictional outcomes under Sackett using only data and knowledge available before
Sackett implementation. For model training, we take AJDs from NWPR, a rule preceding
Sackett, and change (i.e., “relabel”) the outcomes from jurisdictional to non-jurisdictional
for the two categories of waters which lost protection between NWPR and Sackett—
wetlands separated from jurisdictional waters by artificial structures or natural features (SI
Appendix, Table S2 and Section A.1). We identify these two categories of waters by
reading the Sackett majority opinion. We formalized the relabeling in a June 2023 external
email and presentation, before USEPA announced its Sackett rule or USACE began
implementing it.

Model 4 (Ex Post Deep Learning Model). Our ex post deep learning model predicts
jurisdictional outcomes under each CWA rule — Sackett, NWPR, Rapanos, and CWR — by
training on AJDs from all rules.

Both the ex ante and ex post deep learning models begin from a common deep learning
framework—a ResNet-18 backbone (30) pre-trained on ImageNet (31). The input layers
we use to predict the AJDs include color and near infrared aerial imagery, water resource
maps, elevation data, local climate and weather information, soil characteristics, land cover
maps, and ecoregions (SI Appendix, Section A.5 and Table S15). We also include tabular
data on location’s state, USACE district, distance to USACE headquarters, and on the
CWA rule under which the location is evaluated (SI Appendix, Section A.2). For each
model, we pre-train on AJDs describing many CW A rules and then fine-tune the algorithm
on only the CWA rule of interest (SI Appendix, Section A.1).

Measuring Model Performance
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Deep learning models output a raw model score for each site in [0,1]. We use isotonic regression
to translate this raw score into a calibrated jurisdictional probability, which represents the model’s
estimate of the probability that the site is jurisdictional (SI Appendix, Section A.7).

Generating binary classifications (“jurisdictional” versus “not jurisdictional”) from deep learning
models requires a decision threshold; deep learning models predict that sites with calibrated
probabilities above this threshold are jurisdictional and sites with probabilities below this threshold
are not jurisdictional. Analysis could default to a decision threshold of 0.5, which would imply
that any site with a calibrated probability score above 0.5 is predicted to be jurisdictional. However,
a benefit of utilizing a probabilistic model such as deep learning to create projections is the
flexibility to choose the threshold that maximizes model performance on a given performance
metric. For example, one threshold may minimize mean absolute error across the US, while
another threshold may maximize accuracy.

We divide the AJDs into three spatially disjoint groups for model training, development, and
evaluation. The deep learning models use the training set (80% of AJDs) to learn patterns in the
data. We use the validation set (10% of AJDs) to tune model parameters. For all models, we use a
held-out test set (10% of sample) to calculate the model performance statistics this paper reports.
Our use of the test set helps avoid overfitting the model to the validation set and thereby inflating
performance metrics (SI Appendix, Section A.2). The data have class imbalance, since 80.3% of
Sackett AJDs are non-jurisdictional. A naive benchmark that predicts zero jurisdiction anywhere
therefore achieves accuracy of 80.3%.

While predictive performance can be measured using a range, we focus on the widely-used area
under the receiver operating characteristic curve (AUC) (32). The AUC is robust to class
imbalance because it evaluates a model’s ability to rank positive cases above negative cases,
thereby using the full ranking of predicted jurisdictional scores rather than measuring performance
at one chosen decision threshold. This matters because the use of a decision threshold treats sites
with the same binary prediction identically, even if the sites have different calibrated jurisdictional
probabilities (e.g., if one site has 65% probability of jurisdiction and the other has 99%, and both
exceed the binary decision threshold), though a user (e.g., a developer or regulator) may see these
predictions differently.

We also report other model performance metrics besides the AUC that rely on binary decision
thresholds. We report precision and recall, given concern with false positives and false negatives,
as well as their harmonic mean (the F1 Score); accuracy, given its simple interpretation and
common use; and mean absolute error (MAE) nationally, given usefulness for stakeholders. Fig.
1 and SI Appendix, Table S1, define several of these metrics. As with other model parameters, we
choose binary decision thresholds using the validation set (SI Appendix, Section A.7).

The original analysis developing the Wetness geophysical model (19) has two characteristics
worth discussing. First, it projects effects of eight scenarios based on different assumptions about
the share of the year a wetland must be inundated to be jurisdictional, but it does not distinguish
which of the eight scenarios will be enacted. The Wetness model predicts that between 19% and
91% of non-tidal wetlands lose protection under Sackett, a range wide enough to be “bogged down
in mystery” (33). The wetness scenarios range widely because the results depend on assumptions
about how USACE interprets Sackett. Our analysis of the Wetness model focuses on the median
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scenario for simplicity, though does report results for all wetness scenarios. The median scenario
has the best performance in the validation set among all wetness scenarios.

Second, the original Wetness model (19) generates predictions for a narrow subset of US waters—
non-vegetated, non-anthropogenically influenced, shallow water non-tidal wetlands connected to
jurisdictional streams and rivers. We find that these areas only account for 1.2% of Sackett AJDs.
This restricted availability of the Wetness geophysical model limits its applicability nationally. We
therefore also report results for three separate samples of Sackett AJDs (SI Appendix, Section A.1).

Model Results

A naive benchmark, which assumes that no sites are jurisdictional, has poor model performance,
with AUC of 0.500 and F1 Score of 0.000 (Fig. 1 and SI Appendix, Table S1A).

The Wetness geophysical model does not uniformly improve model performance over this naive
benchmark (Fig. 1 and SI Appendix, Table S1B). For example, the Wetness model has an AUC of
0.498, just below the naive benchmark. The wetness model only correctly identifies 1 in 250 sites
that USACE classifies as jurisdictional (i.e., it has recall of 0.004). In part this happens because
wetness categories have a noisy relationship to jurisdiction and only focus on non-tidal wetlands
(SI Appendix, Fig. S4).

The Connected geophysical model improves slightly, with an AUC of 0.512 (Fig. 1 and SI
Appendix, Table S1B). The Connected model improves performance for the sites it predicts as
jurisdictional (i.e., it has high precision). It misses many waters that USACE identifies as
jurisdictional (i.e., it has low recall). The Connected model performs somewhat poorly because
many jurisdictional AJDs are not in national maps of streams or wetlands (NHD or NWI), and
because the Connected model’s geophysical criteria incorrectly exclude many jurisdictional
streams and wetlands.

Ex ante deep learning substantially outperforms the geophysical models on most performance
metrics (Fig. 1 and SI Appendix, Table S1C). Ex ante deep learning has an AUC of 0.693, 0.181
higher than either geophysical model. This represents an enormous performance improvement by
standards common in applied machine learning, where even AUC improvements of 0.05 are
considered to be substantial (34). In all eight scenarios the Wetness model examines, ex ante and
ex post deep learning outperform the Wetness model in AUC and most other performance metrics
(ST Appendix, Table S4). Compared to the Wetness model, ex ante deep learning is sixty-five times
more likely to identify jurisdictional sites (higher recall) and has forty-seven times better
performance on jurisdictional sites (F1 score).

Ex post deep learning has the strongest performance of all models (Fig. 1 and SI Appendix, Table
S1D). It substantially outperforms both geophysical models on all metrics. It also outperforms ex
ante deep learning on some but not all metrics, and by smaller margins. Ex ante and ex post deep
learning have similar AUC. By this important metric, access to post-implementation data does not
materially improve performance relative to the ex ante model. The national MAE of 0.001 from
ex post deep learning means it almost perfectly projects the mean national jurisdiction of Sackett,
while other models have MAE of 0.07 to 0.19, indicating they have some bias in projecting overall
regulatory stringency of Sackett. Ex post deep learning achieves AUC above 0.80 on the other
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CWA rules (NWPR, CWR, and Rapanos), exceeding its levels for Sackett (SI Appendix, Table
S5A).

Describing Jurisdiction: Sackett

To understand patterns of CWA jurisdiction, we calculate each model’s prediction at 4 million
randomly chosen points across the contiguous US. This subsection focuses on predictions from
the ex post deep learning model, since it has the strongest performance, for these 4 million points
and subsets of interest. We compare against the ex ante geophysical and deep learning models to
clarify their differences in substantive conclusions.

The ex post deep learning model calculates that Sackett regulates 11.5% of the contiguous US area,
including 25% of stream miles and 28% of wetland acres (Fig. 2 and SI Appendix, Table S3).
Sackett deregulates floodplains and other areas with important ecosystem services, many of which
prior rules regulated (SI Appendix, Fig. S2 and Tables S7E and S9).

Geophysical models rely on stream and wetland maps like NHD and NWI to make predictions. Ex
post deep learning indicates that 11.3% of areas not in NHD and 8.7% of areas not in NWI’s
palustrine wetlands are jurisdictional (SI Appendix, Table S3B and C). This further underscores
the limits of geophysical models, which substantially rely on one or two stream and wetland maps
like NHD and NWI without directly using AJDs.

Compared to ex post deep learning, geophysical models substantially underestimate CWA
jurisdiction, while ex ante deep learning is much closer to the ex post estimates (Fig. 2, SI
Appendix, Table S3). Geophysical models predict that Sackett regulates less than 3 percent of the
US, though alternative wetness scenarios range widely (SI Appendix, Table S6). The Connected
geophysical model predicts that the CWA regulates only 0.1% of the parts of the US that are not
in NWI or NHD, so it performs especially poorly in these areas. The ex ante deep learning model
projects that Sackett regulates 13.4% of the contiguous US, much closer to the ex post 11.5%.
Similarly, ex post deep learning projects that the CWA protects 27.9% of wetlands, which is in the
ballpark of the ex ante deep learning projection of 31.4%, though nowhere near the geophysical
model projections of 10.9% to 16.5% (SI Appendix, Table S3C).

Describing Jurisdiction: All CWA Rules

Ex post deep learning shows that Sackett regulates fewer waters than any previous rule (Fig. 3 and
SI Appendix, Table S7). Rapanos regulates 46% of stream miles, 41% of wetland acres, and 18%
of contiguous US area. Compared to Rapanos, Sackett deregulates one-third of regulated water
resources and 28% of regulated floodplains.” This amounts to over 700,000 deregulated stream
miles and 19 million deregulated wetland acres. Sackett deregulates the most wetland acres in
Florida and Michigan (SI Appendix, Table S8). Sackett also deregulates 28% of regulated
floodplains, potentially encouraging development in these areas, which is important given rising
national flood damages and growing extreme weather risk due to climate change.

" Our estimates of regulation under previous rules such as NWPR exceed prior algorithmic estimates (6), partly
since we average calibrated probabilities while prior work averages binary jurisdictional predictions (SI Appendix,
Section B.2). Calibrated probabilities represent the probability of jurisdiction. Thus, averaging these probabilities as
we do here, rather than their rounded values as in (6), best describes the share of area that is jurisdictional.
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NWPR and Sackett both have a basis in Justice Scalia’s Rapanos opinion, but the differences are
so far largely unquantified. Ex post deep learning finds that Sackert regulates systematically less
than NWPR, including deregulating a fifth of wetland acres protected under NWPR (Fig. 3 and SI
Appendix, Table S7).

Fig. 3 graphs the “regulatory ping pong” of recent CWA regulation. Jurisdiction fluctuated
between 2018 and 2020 due to differences between CWR and Rapanos. The share of streams and
wetlands regulated fell by about 15% in 2020 under NWPR and returned to broader jurisdiction in
late 2021. Jurisdiction declined by around a third in late 2023, under Sackett.

Maps reveal enormous spatial differences across rules (Fig. 4 and SI Appendix, Fig. S5). Ex post
deep learning finds that compared to Rapanos, Sackett deregulates isolated wetlands in coastal and
inland areas, ephemeral streams across the arid West, and streams and wetlands in almost every
state (SI Appendix, Table S8). Compared to NWPR, Sackett primarily deregulates wetlands along
the East Coast and in some areas of the Pacific Northwest, but changes jurisdiction little across the
Arid West (SI Appendix, Fig. S5C). Ex ante and ex post deep learning models predict qualitatively
similar spatial patterns.

Case studies highlight local differences across rules and predictions (SI Appendix Fig. S1, S6). In
wetland-abundant regions like Michigan’s Upper Peninsula and the North Carolina coast, Sackett
regulates fewer isolated wetlands and small water bodies than Rapanos. In drier regions, Sackett
and NWPR deregulate ephemeral streams. The Wetness geophysical model has no predictions in
most of these areas, given its restriction to a narrow set of non-tidal wetlands. Ex ante deep learning
captures spatial patterns in the ex post data much more effectively than the geophysical models
do.

Wetlands support ecosystem services including flood mitigation and water filtration, and support
CWA goals of decreasing water pollution and improving water-based recreation, including fishing.
Sackett deregulates areas important to all of these ecological functions (SI Appendix, Fig. S2,
Table S9). For example, in areas used for drinking water sources, Sackett has 10% lower
probability of regulation than Rapanos. In “impaired” areas where a large share of waters is too
polluted to support intended uses, Sackett also has 10% lower probability of regulation than
Rapanos.

Discussion

Many groups may value accurate projections of the effects of proposed environmental regulations.
Developers and industrial firms can use such projections to improve regulatory compliance and
guide site and investment decisions. Staff at government agencies like USEPA and USACE, the
Congressional Budget Office, and state Wetland Boards can use such projections to help evaluate
proposed regulations and provide a decision support tool for implementing existing regulations.
Judges can use such projections to understand consequences of alternative interpretations of
statutes. Environmental restoration firms can use such projections to evaluate where investment in
restoring natural resources (e.g., wetland mitigation banks) is most needed. Environmental
organizations can use such projections to guide public discussion of prospective environmental
reforms.
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Ex ante deep learning can provide high-quality projections to support such needs. Ex ante deep
learning helps address a critical problem of policy analysis—projecting effects of proposed
policies before implementation—a time period when analysis is both most uncertain and most
useful.

Our analysis of recent CWA reforms finds that ex ante deep learning far outperforms expert
geophysical projections on most measures of model performance. Expert geophysical projections
provide marginal improvements over a naive benchmark. Ex post deep learning has the strongest
performance and documents enormous decreases in wetland and stream jurisdiction under Sackett
compared to all previous CWA rules.

Future work can further clarify the potential contribution of deep learning to projecting effects of
other reforms. Recent or ongoing reforms to wetland protection in Chile, China, the EU, Japan,
and elsewhere may provide opportunities for related analysis (35—40). Proposed reforms to the
National Environmental Policy Act, Clean Air Act, Safe Drinking Water Act, and other landmark
environmental US statutes may also benefit from deep learning projections. The frequency of
regulatory reforms in financial, labor market, and other non-environmental domains provides
many opportunities to explore related approaches.

In any setting, the relative strength of ex ante deep learning versus domain experts may depend on
the extent to which relabeling effectively characterizes the policy reform. More precise
descriptions of proposed reforms, and descriptions of reforms which overlap with characteristics
of prior policies, may improve the performance of ex ante deep learning. A regulation’s impacts
ultimately depend on agencies’ capacity, agencies’ evolving interpretations of statutes, agencies’
willingness to enforce policy changes, and regulated entities’ compliance. One interpretation is
that in our setting, regulatory agencies implement policy reforms in a way that can be effectively
projected using a flexible interpretation of past policies.

Another intriguing question for future work involves potential combinations of ex ante deep
learning with geophysical frameworks. Some prospective reforms could benefit from taking
observed outcomes under past rules, using domain expertise or geophysical models to determine
which outcomes within certain categories change under a proposed rule, then training an ex ante
deep learning model on the resulting relabeled data. For example, USEPA and USACE released a
draft CWA rule in November 2025. USEPA and USACE propose using geophysical models to
project effects of this rule and dismiss the use of AJDs. Our results raise the possibility that using
geophysical models to relabel AJDs from past rules and training an ex ante deep learning model
to describe relabeled AJDs could substantially outperform the use of geophysical models alone.

While we project effects of regulation as implemented, a related and important question asks
whether agency interpretation of a regulation fits with the intent of a law as written. This represents
another area almost exclusively analyzed by domain experts, and where the potential contribution
of deep learning remains unknown. “Human-in-the-loop” frameworks, where domain experts and
algorithms collaboratively improve an evaluation system’s capabilities, may also provide a useful
avenue to compare the intent of a law as written against an agency’s interpretation of it.
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Fig. 1: Geophysical models have similar or somewhat better performance than the naive
benchmark, ex ante deep learning does much better, and ex post deep learning has the
strongest model performance.

Each bar describes the performance of a separate model for Sackett jurisdiction, according to the
performance metric listed along the x-axis. The naive benchmark (white bar) predicts that no
location is jurisdictional. The Connected geophysical model (light blue bar) defines points as
jurisdictional if they fall within a potentially regulated National Wetlands Inventory (NWI) polygon
that connects with a perennial or intermittent National Hydrography Dataset (NHD) flowline. The
Wetness geophysical model (medium blue bar) describes the median Wetness scenario (19),
“seasonally flooded.” The ex ante deep learning model (medium green bar) describes a projection
of Sackett using ex ante data. The ex post deep learning model (dark green bar) describes a deep
learning model that uses ex post Sackett Approved Jurisdictional Determination (AJD) data. AUC
is the area under the receiver operating curve. F1 Score equals the harmonic mean of precision
and recall. Precision equals TP / (TP + FP), where TP is the count of true positive predictions and
FP is the count of false positive predictions. Precision represents the accuracy of all jurisdictional
predictions. Recall equals TP / (TP + FN), where FN is the count of false negative predictions.
Recall represents the share of all true jurisdictional waters predicted as jurisdictional. Precision
and recall are undefined if a model makes no positive predictions. F1 Score, precision, and recall
performance use the optimal threshold for F1 performance, chosen using the validation set.
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Fig. 2: Ex ante and ex post deep learning project that Sackett regulates a fourth to a third
of water resources; geophysical models substantially under-predict Sackett regulation.

Each bar describes the share of points regulated under separate models for Sackett jurisdiction.
Ex ante and ex post deep learning average calibrated probabilities. The naive benchmark (white
bar) predicts that no location is jurisdictional. The Connected geophysical model (light blue bar)
defines points as jurisdictional if they fall within a potentially regulated National Wetlands
Inventory (NWI) polygon that connects with a perennial or intermittent National Hydrography
Dataset (NHD) flowline. The Wetness geophysical model (medium blue bar) describes the median
Wetness scenario (19), “seasonally flooded.” SI Appendix, Table S4 describes other wetness
scenarios. The ex ante deep learning model (medium green bar) describes a projection of Sackett
using ex ante data. The ex post deep learning model (dark green bar) describes a deep learning
model that uses ex post Sackett AJD data. Streams include areas with 5 meters of perennial,
intermittent, and ephemeral flowline feature codes (fcodes) 46006, 46003, 46007 in the NHD.
Wetlands include areas with 5 meters of NWI wetlands. Floodplains are areas within floodplains
from the National Flood Hazard Layer.
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Fig. 3. Large variation in Clean Water Act jurisdiction across rules creates “regulatory ping pong.” The graph shows the share of
points within 5 meters of stream or wetland (National Hydrography Dataset or National Wetland Inventory) features that are predicted as
jurisdictional, by month, using the ex post deep learning model. To determine which Clean Water Act rule applied in each month, we use
the rule used to decide a majority of Approved Jurisdictional Determinations within each state in each month, calculate statistics by state,
and average across states, weighting by the number of points in the state. Between January 2018 and August 2019, some states
implemented the Clean Water Rule and others implemented Rapanos, due to litigation. Fluctuations in the share of locations regulated
during this period reflect state-level changes in rules applied due to stays on the Clean Water Rule’s implementation (41). Rapanos applied
from September 2019 to May 2020. The Navigable Waters Protection Rule applied from June 2020 to August 2021. Rapanos (defined to
include the 2023 rule) applied again from September 2021 to August 2023. Sackett applied from September 2023 onwards. The US
Environmental Protection Agency and US Army Corps of Engineers are implementing two versions of Sackett in different states due to
pending litigation, which we pool given their similarity.
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Fig. 4. Maps show that regulation under each Clean Water Act rule varies enormously
across the US. (A) and (E) show ex post deep learning projections of jurisdiction under Sackett
and Rapanos. Sl Appendix, Fig. S5D shows ex post deep learning projections under NWPR. (B)
shows ex ante deep learning projection of Sackett. (C) shows Connected geophysical model
projections. (D) shows Wetness model (19) projections. Maps aggregate the four million
prediction points by taking the mean model score in 5 km by 5 km grid cells (~8 prediction points
per grid cell). Extreme calibrated probabilities (0.0 — 0.1; white, 0.9 — 1.0; blue) are plotted with
the same color. Color scaling uses a power transformation (y = 0.6) to improve visual
differentiation at lower probability values.
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A. Materials and Methods

A.1: Model Details

Geophysical Models. The Wetness geophysical model (1) analyzes several scenarios for how
Sackett could affect jurisdiction. Each scenario assumes that a water resource inundated a certain
fraction of the year is jurisdictional; this fraction varies by scenario. Ex ante, it is unclear which of
the wetness scenarios to consider. The main text reports the median scenario in terms of wetness
(scenario 4 out of 8). Table S4 discusses all scenarios. Scenarios 3 and 4 have the best performance
in the validation set. Jurisdiction is not monotonic in wetness, and we observe both jurisdictional
and non-jurisdictional AJDs in six of the eight water regimes with at least one AJD (Fig. S4).

As mentioned in the main text, because the original wetness model presents results for a very
specific set of non-tidal wetlands, we report results for three separate samples of Sackett AJDs.
First, we consider AJDs within wetlands in the analysis area of the original Wetness model (1),
which only includes 36 observations in the test set. Second, we consider AJDs within all NWI non-
tidal wetlands (N=640). Third, we consider all AJDs. To maximize comparability across models,
our main results report the performance of the Wetness model for all Sackett AJDs and assume
that AJDs not in the analysis area of (1) are non-jurisdictional.

The Connected geophysical model closely follows the “damaging” and “very restrictive”
geophysical models developed in (2, 3). We predict that any points within an NWI wetland
polygon that intersects with a “navigable” NHD flowline are jurisdictional. “Navigable” in these
models is defined as having an NHD feature code (fcode) of “perennial” or “intermittent”.
Additionally, we follow the previous models by only considering flowlines “most likely to qualify
as regulatory wetlands” (2, 3). Following NRDC (3), we only consider wetlands likely to be
regulated.! Following (2), we do not consider wetlands that have been drained, excavated, or
farmed.

We also consider a series of geophysical models that use a single geophysical input layers to
predict jurisdiction (see Section A.5, B.1, and Table S5). Specifically, we predict Sackett
jurisdiction using each of the geophysical input layers used as inputs to the deep learning models.
The performance of the ex post model highlights the benefits of using deep learning to parse
through many input layers and learn patterns that predict jurisdiction.

Ex Ante Deep Learning Model. AJD data include classifications of water types (“resource
types”) that differ by rule and that classify each water body. Each resource type corresponds to a
legal description of a category of waters in a rule, rather than to a geophysical classification (e.g.,
resource types often do not correspond to Cowardin (4) wetland types). Under NWPR, for
example, AJDs classify some sites as “adjacent wetlands,” others as “non-adjacent wetlands,” and
others as other types of sites. In machine learning terminology, each AJD provides a “label” for a
location, since the AJD attaches a jurisdictional determination to the location, which is the outcome
we seek to predict. Our ex ante deep learning model “relabels” AJDs by modifying the

! Specifically, we consider only wetlands with a vegetated component with codes EM: Emergent, SS: Scrub-Shrub,
or FO: Forested and a water regime with codes A: Temporarily Flooded, C: Seasonally Flooded, D: Continuously
Saturated, E: Seasonally Flooded/Saturated, F: Semi-permanently Flooded, G: Intermittently Exposed, or H:
Permanently Flooded.
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jurisdictional determination made under one rule to reflect the decision that we conclude would
have been made under a proposed rule. Conclusions about what to relabel come from our reading
of the text of the Sackett decision but use no ex post information about Sackett implementation.

Table S2 shows how we relabel AJDs to create the ex ante deep learning model. This relabeling
scheme assumes that relative to NWPR, Sackert deregulates two categories of waters: wetlands
separated from navigable waters by artificial structures and natural features. We believe these
specific relabeling choices follow directly from majority opinion in Sackett. We chose them in
June 2023, before USEPA announced a conforming rule or USACE announced associated
guidance. SM B.5 of Greenhill et al. (5) discusses how changing labels in past data could describe
new rules, though questions the potential promise of this approach and does not implement it.

We train the ex ante deep learning model in two steps. First, we pre-train the model using AJDs
from all CWA rules besides Sackett. This pre-training allows the model to learn general
relationships between input data and regulatory outcomes that are present across prior CWA rules.
Second, we fine-tune the model using only data on the NWPR AJDs, which have already been
relabeled to characterize Sackett. The fine tuning adapts the representation of the relationship
between inputs and regulation learned in pre-training to a Sackett-specific interpretation of
jurisdiction, without requiring the model to relearn general geophysical patterns from scratch.

Our relabeling methodology builds on past work in machine learning. Most closely related is the
tradition of weak and indirect supervision, where researchers generate labels for unlabeled data
using heuristics of knowledge bases (6-8). Instead of generating entirely new labels for data with
no existing labels, our approach transforms data that have already been labeled to reflect what the
labels would be under a different rule. Unlike ex post deep learning models (5, 9), which are trained
using true labels, or simulation-based methods (10), which project outcomes using process-based
environmental models, our relabeling methodology derives labels by mapping historical decisions
to the criteria of a new regulation. This allows deep learning to generate projections before data
from the rule under consideration exist, enabling ex ante projection.

Ex Post Deep Learning Model. As with the ex ante deep learning model, we train the ex post
deep learning model in two steps. First, we pre-train a single model using pooled data from all
Clean Water Act rules. Second, we fine-tune the model using only data from one rule at a time.
We predict jurisdiction for each of the four main rules enforced since 2018—CWR, Rapanos,
NWPR, and Sackett. We include the 2023 Rule together with Rapanos since they have extremely
similar design. The next section describes deep learning architecture and training details.

The deep learning models can predict jurisdiction for any coordinate in the contiguous US. They
therefore avoid a predetermined decision between a framework only designed to analyze streams
(11) or only designed to analyze non-tidal wetlands (1); each of these categories covers a small
fraction of all AJDs.

A.2: Deep Learning Model Architecture

The ex ante and ex post deep learning models use an architecture that takes both raster data and
tabular data as inputs to predict CWA jurisdiction. The rasters are gridded spatial data such as
satellite imagery and maps of stream and wetland locations. For each AJD, we assemble raster
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data for a 308-by-308 meter (512-by-512 pixel) area centered at the AJD’s latitude and longitude.
Tabular data are row-and-column data consisting of one row for each AJD. These describe
characteristics of the location being evaluated — such as the USACE district deciding the AJD —
that we treat as constant within the 308-by-308 meter neighborhood around the AJD. Each model
outputs a raw model score for each site of interest between 0 and 1. As discussed in the main text,
we then use isotonic regression to translate the raw model scores to a calibrated probability of
regulation.

The model architecture has two branches: one that processes the raster data, and one that processes
the tabular data. The raster branch of the model has 29 input layers: color and near infrared aerial
imagery; the locations and characteristics of streams and wetlands; elevation; summary statistics
of long-run average precipitation, temperature, dewpoint temperature, vapor pressure deficit, solar
radiation, and cloudiness; soils data; land cover data; and Level IV Ecoregions data. Section A.5
provides additional details about input layers. Twenty-eight of these layers were used in Greenhill
et al. (5); we add land cover data from the Coastal-Change Analysis Program (C-CAP) due to its
resolution and quality, while recognizing that C-CAP covers only coastal areas. These inputs
provide a detailed snapshot of ground conditions affecting the probability of CWA jurisdiction and
include the main national layers that USACE reports using in AJDs.

The tabular branch of the model consists of 89 features. These include one-hot encoded identifiers
for the state and USACE district of the location being evaluated, the distance to district
headquarters, and one-hot encoded information on the WOTUS rule under which the location’s
jurisdictional status is being evaluated (i.e. Sackett, Rapanos, NWPR, or CWR). Section A.5
discusses these features. Greenhill et al. (4) included these features in a raster format; we include
them in a tabular format to improve computational efficiency.

The branch processing the raster data is a ResNet-18 (14) convolutional neural network pre-trained
on ImageNet (15). The convolutional neural network takes as inputs a stack of two-dimensional
rasters and outputs a one-dimensional vector summarizing the information in those rasters that is
most relevant to CWA jurisdictional status. This vector is combined with the vector of tabular
features.

The combined vector of features is then passed through a small two-layer neural network (a
perceptron). This step flexibly interacts all the features, allowing for non-linearities and
interactions between the information in the raster data and the information in the tabular data. For
example, the presence of a stream may have different implications for jurisdiction in different
states or USACE districts due to regional differences in hydrology or USACE practices. This step
allows the model to learn such differences if they are present in the AJD data.

Finally, the vector of fully interacted raster and tabular features is used to predict jurisdictional
status. Intuitively, this last step is like running a regularized logistic regression, which penalizes
model complexity, of jurisdictional status on the interacted raster and tabular features. In practice,
all parts of the model are trained jointly so that the feature extraction and prediction steps are
optimized together.
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We experimented with a geo-foundation model in the validation set that used embedding fields
(12) but found that it modestly decreased performance in the validation set, perhaps because other
layers had similar information and due to the sample size. We therefore do not use these embedding
fields data.

Train-Test Split. We divide the 202,295 AJDs into disjoint training, validation, and test data sets.
We avoid footprint overlap between folds so as to prevent leakage across folds (Fig. S7). The deep
learning models use the train, test, and validation split rules from Greenhill et al. (13) (SM, lines
33-43), with a few extensions. When assigning groups for new Approved Jurisdictional
Determinations (AJDs), we first create groups of AJDs with overlapping footprints. If a new AJD's
footprint group overlaps with multiple groups of AJDs used in the original model, the new AJDs
take the split of the AJD it overlaps with. If the new groups connect AJDs that the original model
put in separate groups, we assign or reassign all to the same split. If an AJD from the original
model is in the train split, we assign all connecting AJDs in the same footprint group to training,
then testing, and finally validation. We split all new AJDs that do not overlap, following the
procedure in (13).

A.3: Synthetic Data

AJDs tend to focus on sites where jurisdiction is ambiguous. AJDs therefore describe relatively
few locations that are unambiguously jurisdictional (e.g., in the middle of the Great Lakes or
Mississippi River), or non-jurisdictional (e.g., on desert mountain peaks). Augmenting the AJD
data with locations where prior knowledge suggests unambiguous jurisdiction may improve the
model’s generalizability. Adding unambiguous examples to the training data set may also improve
the model's performance on the test set if the unambiguous examples provide relevant information
to AJD jurisdiction, by helping the model learn features that predict both the unambiguous
examples and the (typically more ambiguous) AJDs.

We therefore add synthetic AJDs to the training and validation sets. Synthetic AJDs do not
represent observed USACE decisions, but instead they represent sites where we generate a data
point which we can conclude with high confidence represents the jurisdictional outcome that
USACE would pick for the site if it had an AJD. We generate jurisdictional synthetic AJD points
in perennial streams that terminate in navigable waters and in the largest 98 inland lakes that are
deep enough for boat access. We generate non-jurisdictional synthetic AJDs for Sackett in isolated
wetlands (prairie potholes, playas, West Coast vernal pools, and salt flats) and along hydrologic
region (HUC2) boundaries (Tables S12, S13). We develop separate procedures for identifying
unambiguously jurisdictional and non-jurisdictional locations, as detailed below. Figs. S7TA and
S7B map the synthetic data that we generate.

Synthetic Data: Jurisdictional Locations. We generate jurisdictional synthetic training data
within National Hydrography Dataset (NHD) (14) area stream, river, sea, and ocean polygons that
connect to NHD flowlines terminating at navigable waters. All NHD flowlines list their terminal
feature. We identify all NHD flowlines whose terminal feature is coastal, a large inland lake such
as the Great Lakes or Humboldt lake, or at the US border; these are potentially navigable. To
ensure completeness, we manually investigate the jurisdictional status of terminal features not
meeting the criteria above that serve as a terminus for over 1,000 other flowlines.
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We keep all NHD area polygons classified as streams/rivers (NHD fcode: 46006) or sea/ocean
(NHD fcode: 44500) that spatially intersect with a flowline identified above. To ensure we select
coordinates inside the water body, we exclude area within a 10 meter buffer inside the boundary
of each NHD area polygon. Finally, we randomly select coordinates from these polygons. Fig.
S7A shows that this procedure primarily selects traditional navigable waters.

Synthetic Data: Non-Jurisdictional Locations. We draw two sets of non-jurisdictional synthetic
data: isolated wetlands and hydrologic unit code (HUC2) boundaries.

Synthetic Non-Jurisdictional Data: Isolated Wetlands. We identify wetlands that are not
jurisdictional under Sackett or NWPR by following the classification of Tiner (15). For each
isolated wetland type in Table S1 and Fig. 3 of Tiner (15), we identify the US region with that type
of isolated wetlands. Tables S12 and S13 describe our mapping from Tiner (15) wetland types to
geographic regions. In some cases, one wetland type spans multiple geographic regions. We were
unable to link about half of the Tiner categories to specific US regions, and therefore we do not
generate synthetic non-jurisdictional training data for these categories.

We then identify isolated wetlands separately for each region and isolated wetland type. We take
all National Wetland Inventory (NWI) (16) polygons at least 100 meters from any navigable water,
where we define navigable waters as above.

To identify wetland types for non-jurisdictional synthetic data, we tabulate all AJDs with the
identified NWI polygons satisfying the criteria of the previous paragraph, separately by Cowardin
(4) code (Table S13). We require that AJDs within wetlands of that Cowardin code must satisfy
the following additional criteria:

1. We must observe at least 25 AJDs falling within wetlands of that Cowardin code;
2. Across all rules, no more than 10% of AJDs within these wetlands can be
jurisdictional;

3. No more than 5% of Navigable Waters Protection Rule (NWPR) and Sackett AJDs
within these wetlands can be jurisdictional.

As one test of whether this procedure effectively identifies isolated wetlands, among the Sackett
AJDs satisfying these criteria, we find that the Army Corps of Engineers (USACE) classifies
resource codes for 97% as isolated wetlands. Other CWA rules lack a distinct resource type for
isolated wetlands, so we cannot report comparable statistics from AJDs for other rules. We
generate synthetic non-jurisdictional training data for NWPR and Sackett only, since the
jurisdictional status of isolated wetlands is more ambiguous under other rules.

Synthetic Non-Jurisdictional Data: HUC2 Boundaries. We generate additional synthetic non-
jurisdictional training data along hydrologic region boundaries. The US Geological Survey defines
a HUC as land area within which surface water drains to a point. We focus on the 21 HUC2 water
resource regions, which define the drainage areas of one or multiple major rivers. HUC2
boundaries are typically uplands, since they demarcate one drainage region from another, and thus
are not jurisdictional. For example, the Pacific Northwest constitutes one HUC2, bounded by
several mountain ranges (Pacific Coast, Siskiyou, Absaroka, and others). The Continental Divide
and Great Basin distinguish parts of other HUC2 boundaries. One could oversimplify a HUC2
boundary as a mountain ridge where one side has streams flowing to the East and the other side
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has streams flowing to the west, though many HUC2 boundary areas in the Midwest and South
are along the highest portion of low-elevation sloped areas.

To generate synthetic training data along HUC2 boundaries, we randomly sample points satisfying
the following criteria:
1. Within 50 meters of HUC2 boundaries
2. Not within 50 kilometers of international borders
3. Not within 50 meters of any NHD flowline that NHD indicates terminates in an ocean,
large inland lake, or US border
4. Not within 50 meters of any NHD area polygon intersecting such NHD flowlines.

We exclude areas within 50 kilometers of international borders since some HUC2 boundaries
coincide with oceans and Great Lakes.

As one test of whether this strategy accurately identifies non-jurisdictional areas, we examine the
69 true AJDs satistying all these criteria. Among these AJDs, 37 were completed under Rapanos,
7 under the Clean Water Rule, 7 under NWPR, and 18 under Sackett. USACE concluded that none
of these 69 AJDs are jurisdictional.

Synthetic Data: Model Training. In model development using the training and validation sets,
we experimented with including different quantities of synthetic data, between about 500 synthetic
points up to 100,000. We found that AJD validation set performance was maximized around 1,000
points of each synthetic type (i.e., 1,000 synthetic jurisdictional points, 1,000 synthetic non-
jurisdictional points from HUC2 boundaries, and 1,000 of each of the synthetic non-jurisdictional
isolated wetland types).

Synthetic data improve model performance both for traditional navigable waters and more
ambiguous cases. Our ex post deep learning model has near-perfect accuracy on synthetic data.
Because the synthetic data are not in the validation set or the held-out test set, no model
performance statistics elsewhere in the paper describe the synthetic data. Additionally, including
synthetic data improves model accuracy on AJDs by 2 to 3 percentage points in the validation set,
as well as improving both precision and recall by 6 to 7 percentage points each. This suggests that
including synthetic points helps the model distinguish between ambiguous and unambiguous
decisions, and so reduces the rate at which the model produces both false positive and false
negative predictions.

A.4 AJD PDF Files

We obtain labels from tabular data that USEPA and USACE provide online (17) and that we
downloaded on March 24, 2025. For each AJD, USACE staff complete a document listing
jurisdiction of each potential water resource in the project, and USEPA and USACE then
separately hand-enter the AJD content into the tabular data we use as labels. PDFs of the AJD
documents are available for a limited subset of sites, while the tabular data are available for all
sites.

To assess potential classification errors in the labels, we manually compare labels in the tabular
data and the AJD documents. We find that labels in the AJD PDF documents disagree with labels
in the tabular data for 3.4% of AJDs, and have coordinates differing by more than 217.8 meters
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for 19.4% of AJDs, meaning that the input data tile does not include the location evaluated by the
AJD. The percentage of differential coordinates partially reflects many project PDFs listing the
project centroid, rather than the centroid of the relevant water feature. We do not use the AJD
document labels or coordinates as ground truth data for a few reasons—the AJD documents are
only available for 7,556 of over 40,000 projects in our sample; a single AJD document often reports
labels for many potential water resources within a development project and correctly mapping
each water feature's label to the water features within the project can introduce additional error;
and few AJD documents list coordinates for individual water resources, while many list
coordinates for the project centroid.

A.5 Input Lavers

Our deep learning models take as inputs 29 raster layers and 89 tabular features. Twenty-eight of
the raster layers are identical to those used in Greenhill et al. (13): three-band color and near
infrared aerial imagery from the National Agricultural Imagery Program (NAIP) (18); wetland
types from NWI (16); river and stream feature codes, stream order, seasonal high and low flows,
and path lengths from NHD; elevation from the 3D Elevation Program; land cover data from the
National Land Cover Dataset (NLCD) (19); soil taxonomic class, hydric rating, water table depth,
flooding frequency, and ponding frequency from the Gridded National Soil Survey Geographic
Database (gNATSGO) (20); average annual total precipitation, average daily minimum
temperature, average daily maximum temperature, average daily mean temperature, average daily
dew point temperature, average daily minimum vapor pressure deficit (VPD), average daily
maximum VPD, average daily clear sky and total solar radiation, and average daily atmospheric
transmittance (cloudiness), all for 1990-2021, from the Parameter-elevation Regressions on
Independent Slopes Model (PRISM) 30-year normal (21); and level IV Ecoregions (22). Further
details about these layers are available in Table S4 of Greenhill et al. (13). We also include land
cover data from the Coastal Change Analysis Program (C-CAP) (23), which has higher native
resolution and is sometimes believed to be more accurate than NLCD. Because C-CAP covers
only coastal areas, we also use NLCD. All raster inputs are resampled from their original resolution
to match the resolution of the 0.6 meter NAIP imagery, resulting in 512 by 512 pixel rasters
centered at the location being evaluated, covering an area of approximately 308 by 308 meters.
Several raster input layers are available only in the contiguous US, so we restrict our analysis to
this region. We selected raster input layers based on the datasets that USACE engineers most
frequently cited in the PDF files accompanying AJDs (13).

The 89 tabular features consist of one-hot encoded identifiers for the state and USACE district of
the location being evaluated, the distance to district headquarters, and one-hot encoded information
on the WOTUS rule under which the location’s jurisdictional status is being evaluated. State and
USACE district boundaries have an important influence on jurisdictional rates. Similarly, distance
to district headquarters may influence the likelihood that a site receives a field visit, which may
also affect jurisdictional determinations (13). Including one-hot encoded rule information allows
us to capture differences across rules and produce model predictions for the same locations under
different rules.

Our visual review of spatial patterns in the 4 million prediction points reveals that deep learning
predictions occasionally display discontinuities within a water body. Investigation indicates that
discontinuities in input layers, typically the National Agricultural Imagery Program (NAIP) (18)
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and the Gridded National Soil Survey Geographic Database (gNATSGO) (20), drive these
patterns. In all examples we investigated, the algorithm itself does not generate these discontinuous
patterns except insofar as the inputs have them. The infrequent abrupt changes in NAIP inputs that
we identified reflect cloud cover affecting processing of remote sensing data. gNATSGO combines
the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database version 2, and
the Raster Soil Survey data. Analysts create SSURGO by stitching together soil survey areas. One
survey area may cover one or several entire counties or parts of counties. This stitching process
occasionally produces discrete spatial changes in gNATSGO inputs.

A.6: Agriculture

The CWA excludes prior converted cropland from jurisdiction, but many AJD coordinates fall
within NLCD’s cropland layer. To understand this contrast, an additional analysis manually
investigated a sample of 88 jurisdictional AJDs from Rapanos, NWPR, and Sackett which have
coordinates within NLCD’s cropland layer. For each AJD where a document was available, this
analysis checked the coordinate in the USEPA-USACE tabular data against the coordinate in the
document. This analysis inspected Google Earth imagery from these coordinates and compared
against any maps in the AJD document. This analysis found that only 12.5% of the sample of AJDs
(11 AJDs) within NLCD’s cropland layer represented agricultural activity. For these AJDs, the
AJD documents contained insufficient information to determine why the AJD was jurisdictional
and was not excluded as prior converted cropland. For example, it is possible these sites became
cropland recently so were not “prior.” Of the remaining AJDs, 48.9% were near agriculture but
not on a field (e.g., a pond or house next to cropland), 29.5% appeared to have slight reporting
error in the coordinate, and 9.1% had incorrect labels, as Section A.4 discusses.

A.7: Model Calibration and Decision Threshold Choice

Raw deep learning model scores have imperfect calibration, i.e., model scores do not reflect the
probability that a point is regulated. We determine this by comparing bins of deep learning model
scores against the empirical probability that AJDs in a bin are jurisdictional. To improve model
calibration, we fit an isotonic regression on the training set, then use the fitted isotonic regression
model to calibrate out-of-sample predictions. This procedure improves model calibration,
especially for calibrated probabilities below 0.6. The Brier score, a common measure of the quality
of model mis-calibration, is 0.178 on the test set before calibration and 0.148 after calibration.

Geophysical models primarily generate binary predictions of whether a site is jurisdictional. Deep
learning models produce continuous model scores, which we calibrate to describe the probability
that a site is regulated. Deep learning models can also generate a binary jurisdictional prediction
indicating whether the site’s calibrated probability exceeds a given threshold (e.g., 0.5). To use all
information from the model, when we report the share of an area that is jurisdictional, we average
calibrated probabilities rather than averaging binary jurisdictional predictions.

Different stakeholders may value different model performance metrics and may thus prefer
different decision thresholds for binary jurisdictional classification. The AUC summarizes how
well a model ranks locations, from more to less likely to be regulated. It therefore aggregates across
all possible decision thresholds without requiring a binary decision cutoff. For example, an AUC
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of 1.0 means the model always assigns higher probability to a jurisdictional site than to a non-
jurisdictional site.

For other metrics, Table S1 reports model performance for classification thresholds that differ by
performance metric, with each threshold chosen to optimize the performance metric of interest.
We use the validation set to choose these thresholds. To evaluate the sensitivity of threshold choice
to validation set sampling variation, we implemented threshold selection using five-fold cross
validation and observed minimal variation in the selected thresholds.

Fig. S8 shows how performance metrics vary across decision thresholds in the validation set. We
choose optimal thresholds based on performance in the validation set, and then apply these to the
test set. Table S14 reports all test set performance metrics at the optimal threshold for each metric.
AUC is invariant to threshold choice. Thresholds near 0.25 optimize F1 score and state MAE. A
lower threshold, 0.17, optimizes national MAE. A decision threshold near 0.50 maximizes overall
accuracy. The figure shows that much of the threshold domain has flat curves, suggesting that
threshold choice has only a marginal impact on overall performance. Furthermore, during model
development, we implemented five-fold cross validation for threshold selection on the validation
set and found that optimal thresholds and the corresponding metrics did not change substantially
across folds.

Histograms show the distribution of the calibrated probabilities (Fig. S9). Ex post deep learning
has high confidence—few sites have a score near 50% and most have calibrated probabilities
below 20% or above 80%. Slight visual differences in probabilities seen between ex post and ex
ante deep learning in Fig. 4 are explained by differences in the share of the 4 million prediction
points with extreme values less than 20%. Ex post deep learning predicts 95% of the 4 million
points with a probability of <20%, while ex ante deep learning only predicts 88%. Fig. SO shows
ex ante deep learning has more predictions in the 20-80% range, particularly within 20—40%. This
small difference is accentuated by the gamma power transformation of the color ramp used in Fig.
4.

A.8: Prediction Points

We report model predictions for groups of sites. We randomly select 4 million points across the
contiguous US, using the same set of locations analyzed by Greenhill et al. (13). These are gathered
by dividing the contiguous US into approximately 80,000 0.1 by 0.1 degree grid cells, then
randomly sampling 50 points in each cell. This large number of points allows us to produce high
resolution maps (Fig. 4), case studies (Fig. S1, S6), and report on predicted regulation overall and
at specific locations of interest (Table S3). We separately report predictions for streams, wetlands,
agricultural sites, floodplains, developed urban areas, and areas likely to see urban growth in the
future. We identify these areas using NHD (14), NWI (16), the National Land Cover Dataset
(NLCD) (19), and the National Flood Insurance Program (NFIP) (24), and Integrated Climate and
Land Use Scenarios (ICLUS) (25) .

We report the mean calibrated probability for the 4 million prediction points and for subsets of
these points in important areas, including within 5 m of NWI wetlands or NHD streams (Table
S3). Because we average across points, we interpret these in terms of stream miles and wetland
acres.
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B. Supplementary Text

B.1: Geophysical Model Projections

Table S5B presents models using one geophysical input layer at a time to determine jurisdiction.
For example, the presence of hydric soils is sometimes taken as an indicator of historic wetlands
(26). A prediction relying on whether a site has hydric soils has an AUC of only 0.492, which is
worse than the naive benchmark, and F1 of 0.295. Row 9 shows that a model assuming sites with
water table depth less than 10 m are jurisdictional also performs poorly. The CWA excludes prior
converted cropland and urban developed areas from jurisdiction, so rows 10 and 11 use crop cover
and built-up area classes in the NLCD. Again, these rules perform poorly.

The Connected Wetlands model reported in all analysis assumes that only NWI wetlands that
intersect with a “navigable” NHD are regulated. The Connected model performs poorly,
particularly when making national predictions, in part because many jurisdictional areas under
Sackett are not identified as wetlands in the NWI dataset.

B.2: Projections Using Probabilities Versus Binary Jurisdictional Predictions

As discussed in the main text, to estimate jurisdiction across groups of sites, Tables S3 and S7
average calibrated probabilities. These tables use the calibrated probabilities since binary
jurisdictional predictions discard information by discretizing each site to an indicator for whether
the calibrated probability exceeds a threshold. For example, if all sites in an area had a calibrated
probability of 0.20, averaging the calibrated probabilities would indicate that 20% of sites are
jurisdictional, while averaging the binary jurisdictional predictions would indicate that 0% of sites
are jurisdictional.

To understand the consequences of this choice, we re-estimated Table S7 by averaging the binary
jurisdictional predictions. Averaging the binary predictions would imply that 11.6% of all sites are
jurisdictional under Rapanos and 5.8% under NWPR. These are well below the values that average
calibrated probabilities. Averaging the binary predictions rather than averaging the calibrated
probabilities mostly decreases the estimated share of points that are jurisdictional for NWPR, and
for points without streams or wetlands. This occurs because, as in the example from the previous
paragraph, binary jurisdictional predictions adjust sites with low calibrated probabilities to zero,
but the calibrated probabilities retain some non-zero estimated probability of regulation for such
sites.

B.3: Additional Discussion of Results

On the full sample, wetness thresholds besides the main scenario discussed in the main text all
have similar performance (Table S4). In the non-tidal wetlands sample (N=36), performance
varies widely across scenarios, reflecting the small sample. Wetness scenarios 3 and 4, which
perform best in the validation sample, have test set AUC of 0.417, well below the benchmark.

Rapanos and CWR let deep learning observe more true positives, increasing recall. NWPR and
Sackett have fewer true positives, decreasing opportunities to learn to predict positives for these
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rules. Ex post deep learning national MAE is also near zero for Rapanos and NWPR, though much
higher for CWR, which has the smallest sample.
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Fig. S1. Case studies reveal performance of ex ante deep learning and spatial patterns of
jurisdiction.

Ex post DL: Rapanos Ex post DL: Sackett Ex ante DL: Sackett
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DL is deep learning. Columns show calibrated model scores for local subsets of the 4 million
random prediction points under three different deep learning models. DL is deep learning. (A)
Lakes and wetlands in the Upper Peninsula of Michigan. All models predict jurisdiction for large
water bodies. Ex post deep learning predicts that Rapanos regulates most of the area, Sackett
regulates surrounding wetlands, and ex ante deep learning closely mirrors ex post deep learning.
(B) Holly Shelter Game Area, North Carolina. Ex post deep learning predicts that Rapanos
regulates most of this coastal outdoor recreation area and Sackett predicts systematically less
jurisdiction. Ex ante deep learning has predictions between these two. (C) Colorado River and
ephemeral streams south of Moab, Utah. All models classify the Colorado River as jurisdictional.
Ex post deep learning predicts that relative to Rapanos, Sackett deregulates ephemeral streams
supplying the river. (D) Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana.
All models classify Flathead Lake in the southwest of the image and the Hungry Horse Reservoir
in the northeast corner as jurisdictional. Ex post deep learning model predicts that Rapanos
extensively regulates areas of Flathead Forest between the water bodies, Sackett regulates little,
and ex ante deep learning concurs. Color scaling uses a power transformation (y = 0.6) to improve
visual differentiation at lower probability values. Figure best viewed in color.



Fig. S2. Sackett deregulates areas that support ecosystem services and are important for

CWA goals.
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(A) Share of points in drinking water source areas. (B) Share of points in floodplains (42). (C)
Proportion of assessed waters considered “impaired” based on pollution and intended use. (D)
Fish habitat conditions (O=worst, 1=best). Each panel splits 4 million random points into the 5km
by 5 km grid cells used to plot Fig. 4. In each graph, the y-axis shows the mean calibrated
probability from ex post Rapanos and Sackett deep learning models, and the x-axis shows the
mean ecosystem value within the grid cell. The x-axis divides grid cells into equal-width bins (0—
1 scale) based on underlying values. The legend shows the grid-level regression coefficient,
with standard errors in parentheses. In all four panels, a hypothesis test that Rapanos and
Sackett have equal slopes rejects with p-value < 0.000, estimated from the interaction term in a
pooled regression including both rules. Impaired waters and fish habitat conditions are
measured by 12-digit hydrologic unit code (HUC12) from the EPA’s 2025 Restoration and
Protection Indicator Database (43).



Fig. $3. Ex ante and ex post deep learning outperform geophysical models.
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(A) and (C) show the Receiver operating curve (ROC) and the Area Under the Curve (AUC). The
ROC plots the True Positive Rate (share of correctly identified positives) against the False
Positive Rate (share of negatives incorrectly identified as positive) across all classification
thresholds. For example, the left-most point corresponds to a threshold above one, predicting no
positives. The right-most point corresponds to a threshold below zero, predicting all positives. Ex
post deep learning (Sackett) has 69.1% probability of ranking a randomly chosen jurisdictional
AJD higher than a randomly chosen non-jurisdictional AJD. AUC = 0.5 is random chance, AUC-
ROC = 1 is perfect. Pooling all CWA rules, ex post deep learning has a 0.837 AUC. (B) and (D)
show the Precision-Recall (PR) Curve and the Area Under the Curve (AUCPR). The PR curve
plots precision (share of predicted positives that are true positives) against recall (share of true
positives identified) across all classification thresholds. The AUCPR averages precision across
all recall levels. A random classifier has an AUC-PR of 0.197 since 19.7% of Sackett AJDs are
jurisdictional. Ex post deep learning (Sackett)’s AUCPR of 0.402 means the model identifies
positive cases with about twice the precision as a random classifier, indicating strong performance
in detecting jurisdictional AJDs despite class imbalance. Pooling all rules, a random classifier has
an AUCPR of 0.325 since 32.5% of AJDs are jurisdictional. Also pooling all rules, ex post deep
learning’s AUCPR of 0.749 means the model identifies positive cases with over twice the precision
as random guessing, indicating strong performance in detecting jurisdictional AJDs despite class
imbalance. The PR curves focus on positive-class performance and are more informative under
class imbalance. Curves are constructed by using all unique calibrated model scores as



thresholds. All curves are independent of any chosen classification cutoff. Because Gold (1),
Connected, and the naive results have binary model scores, these are plotted as points rather
than lines.



Fig. S4. NWI Wetness values for Sackett AJDs noisily measure jurisdiction.
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NWI “Water Regime” values differ across both non-jurisdictional and jurisdictional Sackett AJDs.
Some jurisdictional AJDs have relatively low wetness, and some non-jurisdictional AJDs have
relatively high wetness. This figure plots the water regime value, which describes “Wetness” in
Gold (1) scenarios, for all 322 Sackett AJDs that fall within a NWI polygon in Gold (1). Dark blue
bars display non-jurisdictional AJDs; light orange bars display jurisdictional AJDs. SD is standard
deviation.



Fig. S5. Maps show large spatial differences in regulation across rules and models.
A Ex post deep learning: Sackett — Rapanos B Sackett: Ex ante — ex post deep learning \
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Brown represents newly deregulated, blue represents newly regulated. Maps show changes from (A)
Rapanos to Sackett under ex post deep learning; (B) ex post to ex ante deep learning; (C) NWPR to Sackett
under ex post deep learning. (D) shows ex post deep learning projections under NWPR. Maps aggregate
the four million prediction points by taking the mean model score in 5 km by 5 km grid cells (~8 prediction
points per grid cell).



Fig. S6. Case studies show differences across rules and spatial patterns of jurisdiction.
Ex post DL (NWPR) Connected Wetness
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Columns show calibrated model scores for prediction points under three different models, one deep
learning and two geophysical. The first column shows ex post deep learning (NWPR), the second column




shows the Connected model, and the third column shows the Wetness (1) model (seasonally flooded
scenario). The Wetness model only shows prediction points within wetlands used in Gold (1, 27) which
lack information for most prediction points. (A), Lakes and wetlands in the Upper Peninsula of Michigan.
Ex post deep learning (NWPR) and the Connected model predict little jurisdiction for surrounding
wetlands, and the Wetness model predicts jurisdiction for different surrounding wetlands and information
for many points. (B), Holly Shelter Game Area, North Carolina. Ex post deep learning (NWPR) classifies
most points as jurisdictional in this coastal outdoor recreation area. The Connected model and the
Wetness model predicts little jurisdiction. (C), Colorado River and ephemeral streams south of Moab,
Utah. Ex post deep learning (NWPR) predicts no jurisdiction for ephemeral streams upstream of the river.
The Connected model predicts no jurisdiction, and the Wetness model has no information for any points.
(D), Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana. Ex post deep learning
(NWPR) classifies the lake in the southwest corner and the reservoir in the northeast corner as
jurisdictional, but do not regulate the Flathead Forest. The Connected model predicts no regulation, and
the Wetness model has almost no information on sites in the area. Color scaling uses a power
transformation (y = 0.6) to improve visual differentiation at lower probability values. Figure best viewed in
color.



Fig. S7. Synthetic and true training data span most US regions.
A Synthetic jurisdictional points B Synthetic non-jurisdictional points
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(A), synthetic jurisdictional AJDs and (B), synthetic non-jurisdictional AJDs, both colored by water resource
type. (C), true (non-synthetic) AJDs, colored by label. (D)-(G) separate true AJDs by rule. (H) colors true
AJDs by split. Lines in (A)—(F) show states; lines in (H) show Army Corps (USACE) districts.



Fig. S8. Jurisdictional thresholds optimize model performance for each metric.
A F1-Score, Precision, Recall, and Specificity
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The ex post deep learning (Sackett) model predicts a site as jurisdictional if its calibrated probability
exceeds the relevant threshold. The y-axis in each graph shows the model’s performance on the metric of
interest if the model uses the threshold indicated on the x-axis. Each line with markers shows a different
performance metric. (A), the blue line with circles shows F1; the red line with squares shows recall; the
purple line with triangles shows precision; and the brown line with inverted triangles shows specificity. The
vertical dashed blue line shows the threshold which maximizes F1. (B), the orange line with circles shows
accuracy, the green line with squares shows MAE, and the pink line with triangle shows state MAE. Each
vertical line shows the threshold which maximize the performance metric with matching color (e.g., the
dashed green line shows the threshold which maximizes MAE, which is also shown in green). The
horizontal dashed lines show performance of a naive benchmark that assumes no sites are jurisdictional.



Fig. S$9. Distribution of calibrated probabilities of regulation differ by rule and sample, though
concentrate below 0.2 or over 0.8.
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(continued from previous page)
G Ex ante deep learning (Sackett) — 4mn points
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For each rule and for either the 4 million prediction points or the test set, each graph shows the share of
points with a calibrated probability in one of five evenly sized bins spanning 0.0 to 1.0. Across all rules, and
in both the 4 million random prediction points and the test set, around 90 percent of sites have calibrated
probabilities below 0.2 or above 0.8, indicating that the model has high confidence. The test set has higher
jurisdictional probabilities than the 4 million random prediction points because AJDs disproportionately

represent sites with potential water resources.

H Ex ante deep learning (Sackett) — test set

1.0-

79.4%

0.8-

0.6-

0.4-

Share of Observations

0.2-

5.0%

0.0

0.4 0.6 0.8 1.0
Calibrated Probability

J Ex post deep learning (CWR) — test set

1.0
0.8-
0.6 57.6%

0.4-

Share of Observations

0.2

0.0—
0.0 0.2 0.4 0.6 0.8 1.0

Calibrated Probability



Fig. $10. Relabeling captures Sackett's deregulation of areas with concentrated ecosystem

services and relevant to CWA goals.
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(A) Share of points in drinking water source areas. (B) Share of points in floodplains. (C) Proportion of
assessed waters considered “impaired” based on ambient pollution and relevant standards. (D) Fish habitat
condition score. Each panel splits 4 million random points into the 251,975 5km by 5 km grid cells used to
plot Fig. 4. In each graph, the y-axis shows the mean calibrated probability from ex post deep learning
(NWPR) and ex ante deep learning, and the x-axis shows the mean value within the grid cell. The x-axis
divides grid cells into equal-width bins (0—1 scale) based on underlying values. The legend shows the grid-
level regression coefficient with standard errors in parentheses. Impaired waters and fish habitat conditions
measured by 12-digit hydrologic unit code (HUC12) from the EPA’s 2025 Restoration and Protection
Indicator Database (28).



Table S1: Geophysical models modestly improve on naive benchmark, ex ante deep learning does
better, ex post deep learning has strongest performance.

AUC F1 Precision Recall Accuracy MAE
(1) 2) ) (4) () (6)

a Naive benchmark
No jurisdiction 0.500 0.000 — 0.000 0.803 0.197
b Geophysical models
1. Wetness 0.498 0.007 0.118 0.004 0.798 0.191
2. Connected 0.512 0.065 0.463 0.035 0.802 0.183
¢ Ex ante deep learning model
3. Sackett 0.693 0.332 0.457 0.261 0.802 0.066
d Ex post deep learning model
4. Sackett 0.691 0.368 0.502 0.290 0.819 0.001

All statistics use AJD test set. AUC: Area under the receiver operating curve. All models describe Sackett.
F1: harmonic mean of precision and recall. Precision: TP / (TP + FP), where TP is the count of true positive
predictions and FP is the count of false positive predictions. Recall: TP / (TP + FN), where FN is the count
of false negative predictions. Precision is undefined if a model makes no positive predictions. Accuracy:
percent correct. MAE equals |mean(J;) — mean(C;)|, where J; represents AJD jurisdiction and C; represents
model predictions. Row 1 describes a naive benchmark that predicts no location is jurisdictional. Row 2
describes the median Wetness model (1), “seasonally flooded.” Row 3 defines points as jurisdictional if
they fall within a potential regulatory National Wetlands Inventory (NWI) polygon that connects with a
perennial or intermittent National Hydrography Dataset (NHD) flowline. Row 4 describes the ex ante deep
learning model projection of Sackett using ex ante data. Row 5 describes the ex post Sackett deep learning
model. Rows 4 and 5 show performance of calibrated probabilities with thresholds optimized for
performance for F1 in columns (2), (3), and (4), accuracy in column (5), and national mean absolute error
(MAE) in column (7). Column (1) depends on model calibrated probabilities and is independent of threshold
choice. S| Appendix, Table S14 and Fig. S8, show the thresholds. N = 2,777.



Table S2. Relabeling NWPR AJDs allows training of ex ante deep learning

Jurisdictional
under

Share of Ex ante deep
Definition AJDs NWPR learning
(1) 2) 3) (4)
(a)(1) Water is also subject to Sections 9 or 10 of the
Rivers and Harbors Act - RHA Tidal water is subject
ATTNW10 to the ebb and flow of the tide 0.0035  Yes Yes
(a)(1) Water is currently used, was used in the past,
or may be susceptible to use in interstate or foreign
ATTNWCOMM  commerce (CWA Section404 only) 0.00067 _Yes Yes
(a)(1) A federal court has determined the water is
ATTNWFED navigable in fact under federal law 0.00011  Yes Yes
ATTNWSEAS (a)(1) Territorial Seas 6.4E-05 Yes Yes
(a)(2) Intermittent tributary contributes surface water
flow directly or indirectly to an (a)(1) water in a typical
A2TRIBINT year 0072 Yes Yes
(a)(2) Perennial tributary contributes surface water
flow directly or indirectly to an (a)(1) water in a typical
A2TRIBPER year 0039 Yes Yes
(a)(3) Lake/pond or impoundment of a jurisdictional
water inundated by flooding from an (a)(1)-(a)(3)
A3LPIFLOOD waterin atypicalyear 0 0013 Yes Yes
(a)(3) Lake/pond or impoundment of a jurisdictional
water contributes surface water flow directly or
ASLPIFLOW indirectly to an (a)(1) water in a typical year 0.0057  Yes Yes
A4WETABUT (a)(4) Wetland abuts an (a)(1)-(a)(3) water 011 Yes ] Yes
(a)(4) Wetland separated from an (a)(1)-(a)(3)
water only by an artificial structure allowing a
direct hydrologic surface connection between the
wetland and the (a)(1)-(a)(3) water in a typical
AAWETARTSEP year 0.0076  Yes No
(a)(4) Wetland inundated by flooding from an
A4WETFLOOD  (a)(1)-(a)(3) water in a typicalyear 0.0081  Yes = Yes
(a)(4) Wetland separated from an (a)(1)-(a)(3)
A4WETNATSEP _ water only by a natural feature 0. 0027  Yes No
(b)(10) Stormwater control feature constructed or
excavated in upland or in a non-jurisdictional water to
B10STORM convey, treat, infiltrate, or store stormwater runoff  0.02 | No  No
(b)(11) Groundwater recharge, water reuse, or a
wastewater recycling structure constructed or
B11REUSE excavated in upland or in a non-jurisdictional water  0.00024 | No  No
B12WTS (b)(12) Waste treatment system 0.0018 No No

(Continued next page)



Table S2. Relabeling NWPR AJDs allows training of ex ante deep learning (Continued)

Jurisdictional
under
Share
of Ex ante deep
Definition AJDs NWPR learning
(1) 2) 3) (4)

(b)(1) Water or water feature that is not identified in
(a)(1)-(a)(4) and does not meet the other (b)(1) sub-
B1EXCLUDEDOTH  categories . . | 0.011 No No
(b)(1) Lake/pond or impoundment that does not
contribute surface water flow directly or indirectly to
an (a)(1) water and is not inundated by flooding from

(b)(1) Surface water channel that does not contribute
surface water flow directly or indirectly to an (a)(1)

_BISWCNOSC  waterin atypicalyear 0.0078 No No

_BIWETNONADJ  (b)(1) Non-adjacent wetland 031 No No
(b)(2) Groundwater, including groundwater drained

 B2GRNDWATER  through subsurface drainage systems 0.00011  No No
(b)(3) Ephemeral feature, including an ephemeral

_B3EPHEMERAL stream, swale, gully, rill, orpool 022 No No
(b)(4) Diffuse stormwater run-off over upland or

B4SHEETFLOW directional sheet flow over upland 0.0016 No No

(b)(5) Ditch that is not an (a)(1) or (a)(2) water, and
those portions of a ditch constructed in an (a)(4)
B5DITCH water that do not satisfy the conditions of (c)(1) 0.094 No No

(b)(7) Artificially irrigated area, including fields flooded
for agricultural production, that would revert to upland
should application of irrigation water to that area

(b)(8) Artificial lake/pond constructed or excavated in
upland or a non-jurisdictional water, so long as the
artificial lake or pond is not an impoundment of a
BBLPIART jurisdictional water that meets (c)(6) 0.028 No No

(b)(9) Water-filled depression constructed/excavated
in upland/non-jurisdictional water incidental to
mining/construction or pit excavated in upland/non-
BODEPPIT jurisdictional water to obtain fill/sand/gravel 0.0058 No No

The review area is comprised entirely of dry land (i.e.
There are no waters or water features, including

'DRYLAND  wetlands, of any kind in the entire review area) 0.034 No No
RHA Non-tidal water is on the district's Section 10
RHA10NAV waters list 0.00045 No No

(Continued next page)



Table S2. Relabeling NWPR AJDs allows training of ex ante deep learning models. (Continued)

Jurisdictional
under
Share of Ex ante deep
Definition AJDs NWPR learning
(1) 2) 3) 4)

Rivers and Harbors Act Section 10
water excluded from the CWA as a
(b)(10) stormwater control feature
constructed or excavated in upland
or in a non-jurisdictional water to
convey, treat, infiltrate, or store

_RHAB10STORM __  stormwater runoff 0.00010 | No | No
Rivers and Harbors Act Section 10
water excluded from the CWA as a
(b)(1) water or water feature that is
not identified in (a)(1)-(a)(4) and

RHAB1EXCLUDEDOT does not meet the other (b)(1) sub-

Ho categories 0.000016 | No No
Rivers and Harbors Act Section 10
water excluded from the CWA as a
(b)(1) lake/pond or impoundment
that does not contribute surface
water flow directly or indirectly to an
(a)(1) water and is not inundated by
flooding from an (a)(1)-(a)(3) water

_RHAB1LPINOSCFLD  inatypicalyear 0.000016 | No | No
Rivers and Harbors Act Section 10
water excluded from the CWA as a

_RHABIWETNONADJ  (b)(1) non-adjacent wetland 0.0014 | No | No
Rivers and Harbors Act Section 10
water excluded from the CWA as a
(b)(3) ephemeral feature, including
an ephemeral stream, swale, gully,

_RHAB3EPHEMERAL  rilorpool 0.00032 | No No

Rivers and Harbors Act Section 10
water excluded from the CWA as

_RHAB6PCC | (b)(6) prior converted cropland 0.000016 | No | No
RHA Tidal water is subject to the
RHATIDAL ebb and flow of the tide 0.00075 No No

Each row describes one NWPR resource type. Ex ante deep learning relabeled resource types appear in
bold. Column (2) shows non-synthetic AJDs for each resource type as a share of all NWPR AJDs.



Table S3. Ex post and ex ante deep learning models project that Sackett regulates relatively few
water resources.

Geophysical Deep learning
Ex
Naive Wetness Ex ante post

benchmark (Gold) Connected Sackett Sackett
(1) 2) ) (4) (5)

a General groups of points
All 4 million points 0.000 0.026 0.017 0.134 0.115
AJD test set 0.000 0.006 0.015 0.204 0.161

b Rivers and streams

All (NHD all) 0.000 0.067 0.109 0.360 0.250
Perennial 0.000 0.122 0.194 0.502 0.348
Intermittent or ephemeral 0.000 0.033 0.065 0.232 0.138
None (not in NHD) 0.000 0.025 0.015 0.129 0.113
¢ Wetlands
All (NWI palustrine) 0.000 0.165 0.109 0.314 0.279
Non-tidal wetlands 0.000 0.524 0.336 0.286 0.319
Emergent (NWI) 0.000 0.348 0.157 0.194 0.199
Forested (NWI) 0.000 0.330 0.278 0.291 0.284
None (not in NWI palustrine) 0.000 0.001 0.001 0.102 0.087

d Rivers, streams, and wetlands
All (NWI all, NHD all) 0.000 0.161 0.107 0.311 0.275
None (not in NWI or NHD) 0.000 0.001 0.001 0.102 0.086

e Other important groups of points

Cropland and pasture (NLCD) 0.000 0.008 0.004 0.098 0.082
Floodplains (NFIP) 0.000 0.179 0.124 0.353 0.333
Urban growth areas (ICLUS) 0.000 0.017 0.012 0.133 0.093
Urban developed (NLCD) 0.000 0.007 0.004 0.116 0.087

Values represent share of points regulated. Columns (4)—(5) average calibrated probabilities. Column (1)
describes a naive model where no points are jurisdictional. Column (2) describes the median scenario from
the original wetness model (1), “seasonally flooded.” Column (3) defines points as jurisdictional in
“potentially regulated” NWI polygons that intersect with perennial or intermittent NHD flowlines. Column (4)
describes the ex ante deep learning projection of Sackett, which relabels resource types in NWPR AJDs.
Column (5) describes the ex post deep learning model of Sackett. (B)—(E) describe subsets of the four
million prediction points. NHD includes areas within 5 m of perennial, intermittent, and ephemeral flowline
feature codes (fcodes) 46006, 46003, and 46007. Non-tidal wetlands include wetlands analyzed in the
original wetness model (27). NHD is National Hydrography Dataset, NWI is National Wetlands Inventory,
NLCD is National Land Cover Dataset, NFIP is National Insurance Program, ICLUS is Integrated Climate
and Land-Use Scenarios, DL is deep learning.



Table S4. Ex ante and ex post deep learning outperform different wetness scenarios

AUC F1 Precision Recall Accuracy MAE
(1) (2) 3) (4) (5) (6)

AAllsites (N=2,777)

1 Temporarily flooded ~ 0.499 | 0021 0167 | 0.011 0.794  0.184
2 Seasonally

‘saturated 0501 | 0.021 0214 | 0.011 0.797  0.187
3 Continuously

‘saturated 0498 | 0.007 0118 | 0.004 0.798  0.191

4 Seasonally flooded 0498 | 0.007 0118 | 0.004 0.798  0.191
5 Seasonally

flooded/saturated 0498 | 0.004 0083 | 0.002 0.799  0.193
6 Semi-permanently

flooded 0500 | 0.004 0250 | 0.002 0802  0.196
7 Intermittently

exposed 0501 | 0.004 0500 | 0.002 0803  0.197
8 Permanently

flooded 0501 | 0.004 0500 | 0.002 0803  0.197

9 Naive 0500 | 0.000 0.000 | 0.000 0803  0.197

10 Connected 0512 | 0.065 0463 | 0035 = 0802  0.183
11 Ex ante DL

(Sackett) 0693 | 0332 0457 | 0261 0.802  0.066
12 Ex post DL

(Sackett) 0691 | 0368 0502 | 0290 0819  0.001

B Non-tidal NWI (Emergent, Forested, Pond) (N=640) .

1 Temporarily flooded ~ 0.502 | 0.030 0250 0.016 0.800  0.181
2 Seasonally 0.503 0.031 0.286 0.016 0.802 0.183

saturated
3 Continuously 0.496 0.000 0.000 0.000 0.800 0.188

saturated

4 Seasonally flooded 0.496 | 0.000 0.000 | 0.000 0.800  0.188
5 Seasonally 0.497 0.000 0.000 0.000 0.802 0.189

flooded/saturated
6 Semi-permanently 0.500 0.000 0.000 0.000 0.806 0.194

flooded
7 Intermittently 0.500 0.000 0.000 0.000 0.806 0.194

exposed
8 Permanently 0.500 0.000 0.000 0.000 0.806 0.194

flooded

‘9Naive 0500 | 0.000 0.000 | 0.000 0806  0.194

10 Connected 0517 | 0088 0462 | 0048 0805  0.173
11 Ex ante DL 0.703 0.370 0.487 0.298 0.820 0.056

(Sackett)
12 Ex post DL 0.724 0.424 0.568 0.339 0.825 0.003
(Sackett)

(Continued next page)



Table S4. Ex ante and ex post deep learning outperform different wetnhess scenarios (continued)

AUC F1 Precision Recall Accuracy MAE
(1) 2) 3) (4) () (6)

flooded 0.500 0286 0167 1000  0.167 | 0.833
2 Seasonally

~saturated 0633 0353 0214 1000 0389 | 0.611
3 Continuously

~saturated 0.417 0174 0118 0333 = 0472 | 0.306
4 Seasonally

flooded 0.417 0174 0118 0333 0472 | 0.306
5 Seasonally

flooded/saturated 0.400 0111 0083 0167 055 | 0.167
6 Semi-permanently

flooded 0.533 0200 0250 0167 0778 | 0.056
7 Intermittently

exposed 0.567 0250 0500 0167  0.833 | 0.111
8 Permanently

flooded 0.567 0250 0500 0167  0.833 | 0111

9Naive 0.500 0.000 0000 0000 0833 | 0.167

10 Connected 0.483 0.000 0.000  0.000 0806 | 0.139
11 Ex ante DL

(Sackett) 0.819 0200 0250 0167  0.806 | 0.000
12 Ex post DL
(Sackett) 0.947 0.625 0.500 0.833 0.917 0.139

MAE: mean absolute error in predicted share jurisdictional in US or state. AUC-ROC: Area under the
receiver operating curve. F1: harmonic mean of precision and recall. Precision: TP / (TP + FP), where TP
is the count of true positive predictions and FP is the count of false positive predictions. Recall: TP / (TP +
FN), where FN is the count of false negative predictions. Accuracy: percent correct. Column (6) equals
|mean(J;) — mean(C;)|, where J; represents AJD jurisdiction and C; represents model-predicted jurisdiction.
Each panel describes jurisdiction predicted by scenarios analyzed in Gold (27). Each scenario indicates
how "wet" a wetland must be to be protected under the Clean Water Act. In other words, in scenario 4, all
AJDs within wetlands (27) at least as wet as "seasonally flooded" are predicted as WOTUS,; all others are
predicted as non-WOTUS. The median scenario ex-ante, Scenario 4, is used as the wetness model
throughout the rest of the paper. (A), N=2,777. (B), N=640. (C), N=36.



Table S5. For all rules, ex post deep learning performs well but individual input layers perform
poorly.

AUC F1  Precision Recall Accuracy US N
1 (2 ) 4) () (6) (7)

A Ex post deep learning, by rule

V. Alrules 0.837 0.665 0.787 0575  0.811  0.088 20,844
_ 2.S5ackett 0.691 0.368 0502 0290 0819  0.001 2,777
~ 3. Rapanos 0.864 0.761  0.737  0.786  0.819  0.005 10,187
CANWPR 0.805 0.603 0561 0652 0801 0.010 6,373
5. CWR 0.856 0.748 0.756 0.740 0.802 0.101 1,507

5. Wetland(NWI) 0502 0253 0199  0.349  0.595  0.148 2,777

~6.Streem(NHD) 0492 0058 0146  0.036  0.768  0.148 2,777

7. Wetland or stream 0499 0253 0.196  0.354  0.587  0.158 2,777
8. Hydric soil (QNATSGO) 0492 0295 0.194 0624 0413 0439 2,777

11. Urban developed (NLCD) 0.491 0.303 0.193 0.701 0.364 0518 2,777

(A), performance of ex post deep learning calibrated probabilities with thresholds optimized for
performance for F1 in columns (2), (3), and (4), accuracy in columns (5), and national mean absolute error
(MAE) in column (6). Column (1) depends on model calibrated probabilities and is independent of threshold
choice. (B), forecasting based on individual layers on for Sackett AJDs. MAE: mean absolute error in
predicted share jurisdictional in US or state. AUC-ROC: Area under the receiver operating curve. F1:
harmonic mean of precision and recall. Precision: TP / (TP + FP), where TP is the count of true positive
predictions and FP is the count of false positive predictions. Recall: TP / (TP + FN), where FN is the count
of false negative predictions. Recall is not defined if a model makes no positive predictions. Accuracy:
percent correct. Column (6) equals |mean(J;) — mean(C;)|, where J; represents AJD jurisdiction and C;
represents model-predicted jurisdiction. Row 5 predicts regulation if within 5 m of a NWI wetland; row 6 if
within 5 m of an NHD stream; row 7 if within 5 m of either an NWI wetland or NHD stream; row 8 if the area
has a hydric soil according to the Gridded National Soil Survey Geographic Database (gNATSGO). Row 9
predicts regulation if the water table is less than 10 meters deep, and no regulation everywhere else. Rows
10 and 11 predict no regulation in cropland and pasture, and urban developed areas, respectively, and
regulation everywhere else. NWPR is the Navigable Waters Protection Rule. CWR is the Clean Water
Rule.



Table S6. Wetness models project a wide range of jurisdiction.

Season
Season ally Semi-
Tempora ally Continuo Season flooded permane Intermitte Permane
rily saturate usly ally /saturat ntly ntly ntly
flooded d saturated flooded ed flooded exposed flooded
(1) 2) ) (4) (5) (6) (7) (8)
A General groups of
OIS
__All 4 million points | 0049 0036 | 0.030 __0.026 _ 0.010 _0.008 __ 0.003 ___ 0.003
_AJDtestset | 0013 ___0.01 | 0.006 ___0.006____ 0.004 __ 0.001 | 0.001_ 0.001__
_BRivers and streams
_AINHDal) 0129 0077 | 0070 ___0.067  0.020 _ 0.012 _ 0.003 ___ 0.003 _
__Perennial | 0221 0139 | 0126 0122  0.040 _ 0.020 __0.005 ___ 0.005 _
Intermittent or
_ephemeral 0.075 0.039 0034 0033 0005 0004 0000  0.000
_None (notinNHD) 0.047 0.036 0030 0025 0010 0008 0003  0.003 _
C Wetlands

e ] 0.994 0742 | 0.622 0524 0213  0.163 | 0.059 | 0.059

__Emergent (NWI) | 0546 0401 | 0376 0348 0.118  0.099 | 0.013 | 0.013

__Forested (NWI) | 0.711 . 0534 | 0412 0330 0.122  0.077 | 0.007 | 0.007__.
None (not in NWI

_palustrine) | 0.004 0.002 | 0.002 0.001 0.000 _0.000 | 0.000 | 0.000__

NHD) 0.003_ 0.002 | 0.002  0.001 __0.000 __0.000 _0.000 _  0.000 .
E Other important groups of

OIS
Cropland and pasture

JNLCD) 0.016__ 0.009 | 0.008  0.008  0.003  0.002 0002 0002
__Floodplains (NFIP) 0276 0198 | 0181 0179 0085 0.078 0033  0.033

(IcLus) ] 0034 0023 0.018 0017 0.005  0.004 | 0.002 0.002
Urban developed
(NLCD) 0.012 0.008 0.007 0.007 0.002 0.001 0.001 0.001

Each column shows one scenario from the Wetness model (1). Model numbers in (1) correspond to column
numbers here. Table shows the share of points each framework estimates are regulated. Panels B through D
describe subsets of the four million prediction points. NHD only refers to flowlines. NFIP is the National Flood
Insurance Program and ICLUS is the Integrated Climate and Land Use Scenarios.



Table S7. Sackett regulates less than earlier CWA rules.

CWR Rapanos NWPR Sackett

(1) 2) ) 4)
_AGeneralgroups of points .
_All4millionpoints 0230 0.179 0138 0.115 _
_AlNDtestset . 0402 0.383 0246 0.161 _
_BRiversand streams
CAINRDall) 0.524 | 0.463 0427 0249
_Perennial 0713 0.615 0602 0.347
__Intermittent or ephemeral 0373 0.336_ . 0287  0.137
_None (notinNHD) . 0225 0173 0133 ____.0.112
CWetlands
Al (NWlpalustrine) . 0.567 __0.410 0351 ..0.278
__Non-tidal wetlands(27) 0.689 0463 0389 0318
_Emergent (NWI) 0509 0.343 0234 . 0.199 _
_Forested (NWI) . 0702 0.455 0400 0.284
___None (notin NWI palustrine) . ___ 0172 0.139 0.101 . .0.087
_DRivers, streams, and wetlands .
_AIL(NWIall, NHDall) 0.561 | 0.407 0349 0275
__None (notin NWIorNHD) 0.171 . 0.138 _0.100 _ 0.086
_E Other important groups of points .
___Cropland and pasture (NLCD) . 0.147 . 0.124 0.098 _ 0.082
___Floodplains (NFIP) . 0.611 | 0459 0386 0.333 _
_.Urban growth areas (ICLUS) 0.244  0.169  0.135  0.093
Urban developed (NLCD) 0.211 0.139 0.110 0.087

Table shows the share of points each framework estimates are regulated. Columns (1)—(4)
average calibrated probabilities from ex post deep learning. Column (1) describes regulation
under the Clean Water Rule (CWR). Column (2) describes regulation under Rapanos. Column
(3) describes regulation under NWPR. Column (4) duplicates column (5) from Table S3. (B)—(D)
describe subsets of the four million prediction points. NHD only refers to flowlines. NFIP is the
National Flood Insurance Program and ICLUS is the Integrated Climate and Land Use Scenarios.



Table S8. Regulated stream miles and wetland acres, by state.

Stream Miles Regulated Wetland Acres Regulated

Total Total Difference Difference

Stream  Wetland Rapanos Sackett Sackett- Rapanos Sackett Sackett -

State Miles Acres (share) (share) Rapanos (share) (share) Rapanos

(1) 2) 3) (4) (5) (6) () (8) 9)

National 3,154,478 119,825,265 - -.-r05047 - - -19,321,637
Alabama 72,650 4,043,348 049 035 10752 041 038  -109,170
Arizona 139,281 262,281 | 016 0.09 9,610 032 | 0.18 ~ -36,457
Arkansas 78,496 2,558,428 048 025  -18,525 039 | 0.30  -235375
California - 173,028 2,789,804 040 015 = -42565 039 | 0.15  -694,661
Colorado 93,255 1,522,952 028 014  -13,056 025 | 0.13  -184,277
Connecticut 5,215 304,750 | 094 041 2,717 084 | 0.19  -196,259
Delaware 2,234 290,940 | 079 030 -1.097 059 | 030  -84,954
Florda 22,385 12,681,770 076 060 -3,604 068 | 0.45 -2,916,807
Georgia 64,833 6,396,737 045 036 -5,381 028 | 027  -6,397
ldaho 94,753 1,119,249 045 038 6,254 051 | 033  -194,749
lllinois 67,074 1,271,986  0.60 018  -27,970 056 | 021  -443,923
Indiana 24,066 1,008,100 051  0.16 -8,543 029 | 0.13  -160,288
lowa 67,717 1,014174 062 017  -30,473 045 | 0.14  -323,522
Kansas 118,236 1,349,856 030  0.11 -23,293 024 | 0.09  -206,528
Kentucky 45,616 430,781 | 017 009 -3,786 023 | 016 -27,139
Louisiana 43,096 8,092819 059 059 259 064 | 068 283,249
Maine 24974 2,569,961 073 018  -13,961 063 | 0.14  -1,256,711
Maryland 10,263 863,198 | 088 043 -4,680 080 | 0.44  -308,162
Massachusetts 7,273 775106 | 075 023 -3,767 054 | 0.15  -302,291
Michigan 47,861 7,712,081 | 08 036  -24122 068 | 032 -2,814,909
Minnesota 60,103 9,973,334 016 013 -1.623 009 | 009 9973
Mississippi 77,386 4,534,181 | 040 032 -5,881 038 | 045 321,927
Missouri 95,347 1,388,966  0.63  0.16  -44,813 043 | 0.18  -352,797
Montana = - 166,847 1,589,844 028 023 -8,843 030 | 020  -163,754
Nebraska 72,506 549,755 | 033 014  -13269 030 | 0.14  -87,961
Nevada = - 143,616 1,003,174 033 011  -30,878 0.44 | 0.18  -258,819
New Hampshire 9,374 384,706 | 071 019 4,790 055 | 0.12  -163,115
New Jersey 7,128 1,019,092 090 040 -3,957 073 | 0.30  -440,248
New Mexico 109,260 383,873 | 011 010 983 0.14 | 012 9213

New York 48,756 2,651,158 0.67 0.21 -22,428 0.43 0.13 -816,557

(Continued next page)



Table S8. Regulated stream miles and wetland acres, by state. (Continued)

North Carolina 56,673 4,679,517 0.92 0.50 -23,916 0.84 0.50 -1,600,395

Ohio 54,736 715219 | 036 011 -13,465 027 | 013 99415
Oklahoma 75615 1274713 067 019  -35766 056 | 022 432,128
Oregon 102,984 1,803,096 046 026  -20,185 050 | 022 -497,655
_Pennsylvania 51,477 588,835 | 077 031 -23,782 072 | 035  -219,047
Rhode Island 978 86,061 | 088 019 679 064 | 014 -43,203
South
Carolina 29,372 4238935 082 048 9,898 067 | 039  -1,191,141
_South Dakota 96,965 3,529,693  0.54 024  -29,283 027 | 013 465,919
_Tennessee 59,244 1,148,777 026 013 -7,820 036 | 023 -153,936
Texas 176,194 5,551,483 056 025  -54,973 059 | 036  -1,276,841
Utah 82,724 624,397 | 044 015  -23,494 037 | 024 -83,045
Vermont 7,100 287,628 | 047 011 2542 029 | 009 -96,375
Virginia 49,280 1,682,396 083 043  -19909 079 | 055  -408,822

Wyoming 106,082 1,646,169 0.25 0.17 -8,699 0.25 0.16 -153,094

Total stream miles in column (2) is from NHD stream and river flowline features. Total wetland
acres in column (3) is from NWI. Regulation rates in columns (3), (4), (6), and (7) display
calibrated probabilities from ex post deep learning (Sackett and Rapanos), applied to the subset
of four million prediction points that are within 5 meters of NHD or NWI features. The difference
in column (5) is measured in stream miles, and in column (8) in wetland acres.



Table S9. Recent rules deregulate drinking water sources.

Rapanos NWPR Sackett
(1) (2) (3)
_A Share Regulated
1. Alpoints 0243 0187 | 0.144
_2.NHDorNWlpoints 0523 0.448 | 0366
3. NHDpoints 0628 0.578 | 0350
4. NWlpoints | 0525 0.449 | 0369
B Pop. Served
Weighted
1. Alpoints | 0262 | 0180 | 0139
_2.NHDorNWlpoints 0593 0463 | 0391
3. NHDpoints 0637 0.565 | 035
4. NWI points 0.596 0.465 0.394

Columns show the results from ex post deep learning models fine-tuned on each CWA rule. A
12-digit hydrologic unit code (HUC12) or subwatershed is the finest polygon delineation of
watershed boundaries the US Geological Survey defines, corresponding to about 80,000
HUC12s. This table considers active 2019 community water systems (CWS). (A), share of
prediction points within HUC12 areas that serve as drinking water inputs for an active 2019
CWS predicted as jurisdictional under each regime. (B), same share weighted by the population
served by each CWS. NWPR is the Navigable Waters Protection Rule.



Table S10. Sackett divides AJDs into resource types corresponding to different legal
categorizations of waters.

Share
Share of  juris-
Definition AJDs dictional
@) (2 3)

A Pre-2015-Post-Sackett

(a)(1) Traditional Navigable Water, also subject to
Sections 9 or 10 of the Rivers and Harbors Act (Section

A1.TNW-404.10 10/404) 0.0027 1.00
A2 INTSTATE-404 (a)(2) Interstate Waters (Section 404 Only) 0.00025 1.00
(a)(4) Impoundments of waters otherwise defined as

A4 IMPDT-404 "waters of the United States" 0.0052 1.00

(a)(5) Tributaries of waters identified in paragraph (a)(1)
through (4), where the tributary is a relatively permanent,

A5.TRIB-404 standing or continuously flowing body of water 0.094 1.00
(a)(7) Wetland adjacent to a non-wetland water identified
A7-AJD.WETL-404 in(@)(1)-G@e) 0095 1.00

Dry Land - The review area is comprised entirely of dry
land (i.e. there are no aquatic features, including

(a)(8) Waste treatment systems, including treatment
ponds or lagoons, designed to meet the requirements of

EXCL-wrs the Clean Water Act . 0.0081 000
NON-JD - PREAMBLE - Preamble water - Atrtificially irrigated areas which would
ART.IRR revert to upland if the irrigation ceased 0.0024 0.00

Preamble water - Atrtificial lake/pond created by
excavating/diking dry land, used exclusively for purposes
NON-JD - PREAMBLE - such as stock watering, irrigation, settling basins, or rice
ART.LAKE.POND growing 0.04 0.00

Preamble water - Atrtificial reflecting or swimming pools or
other small ornamental bodies of water created by
NON-JD - PREAMBLE - excavating and/or diking dry land to retain water for

ART.REF.SWIM.ORN primarily aestheticreasons 0.0023 000
NON-JD - PREAMBLE -

NON-TIDAL.DITCH- Preamble water -Non-tidal drainage and irrigation ditches

DRY.LAND excavated on dry land 0.0033 0.00

Preamble water - Waterfilled depression created in dry

land and pits excavated in dry land unless and until the
NON-JD - PREAMBLE - operation is abandoned and resulting body of water meets
WATERFILLED.DEP-PITS definition of WOTUS 0.012 0.00

(Continued next page)




Table S10. Sackett divides AJDs into resource types corresponding to different legal
categorizations of waters. (Continued)

Share
Share of  juris-
Definition AJDs  dictional
(1) 2) 3)
Rapanos Guidance - Ditches (including roadside ditches)
NON-JD - excavated wholly in and draining only uplands and that do
RAPANOS.GUIDE - DITCH not carry a relatively permanent flow of water 009 0.00
NON-JD - Rapanos Guidance - Swales or erosional features (e.g.,
RAPANOS.GUIDE - gullies, small washes, characterized by low volume,
SWALE.EROSION infrequent, or short duration flow) 0.073 0.00
NON-WOTUS - Intrastate Lake or Pond that is not a
NON-WOTUS- tributary to a water identified in paragraphs (a)(1) through
LAKE.POND.NEGATIVE-A5 (4) 0023 0.00
NON-WOTUS- NON-WOTUS - Intrastate Stream that is not a tributary to
STREAM.NEGATIVE-AS  a water identified in paragraphs (a)(1) through (4) 0.021 0.00
NON-WOTUS: Tributary to a water identified in
paragraphs (a)(1) through (4), where the tributary is not a
NON-WOTUS- relatively permanent, standing or continuously flowing
TRIB.NEGATIVE-AS body of water 019 0.00
NON-WOTUS- NON-WOTUS: Wetland that is not adjacent to a water
WETL.NEGATIVE-A7 identified in paragraph (a)(1) through (6) 028 0.00
RHA - Non-tidal water is on the district's Section 10
RHA-1ONAV waters list (Secton 10Only) 0.00025  1.00
RHA - Tidal water is subject to the ebb and flow of the tide
RHA-10TIDAL (Section10Only) 0.00013 _ 1.00
B Amended-2023-Rule
A1-1.TNW-404 (a)(1)(i) Traditional Navigable Water (Section 404 Only)  0.0083 ~ 1.00
(a)(1)(i) Traditional Navigable Water, also subject to
Sections 9 or 10 of the Rivers and Harbors Act (Section
A1-1.TNW-404.10 10/404) 0.0033 1.00
(a)(1)(ii) Territorial Seas, also subject to Sections 9 or 10
A1-2. TERSEAS-404.10 of the Rivers and Harbors Act (Section 10/404) 0.0001 1.00
A1-3.INTSTATE-404 (a)(1)(iii) Interstate Waters (Section 404 Only) 0.0002 1.00
A2.IMPDT-404 (2)(2) Jurisdictional Impoundment (Section 404 Only) 0.0027  1.00
A3.TRIB-404 (a)(3) Tributary (Section 404 Only) 0.061 1.00
A4-1.ADJ.WET.A1- (a)(4)(i) Adjacent Wetland, adjacent to (a)(1))(iii) Interstate
INTSTATE-404 Water 0.0006 1.00
A4-1.ADJ.WET.A1- (a)(4)(i) Adjacent Wetland, adjacent to (a)(1)(ii) Territorial
TERSEAS-404 Sea 0.0002 1.00
A4-1.ADJ.WET.A1-TNW-404 (a)(4)(i) Adjacent Wetland, adjacent to (a)(1)(i) TNW 0.013 1.00

(a)(4)(ii) Adjacent Wetland, adjacent to a relatively
A4-2. ADJ.WET.A2&amp;A3- permanent paragraph (a)(2) Impoundment or (a)(3)
404 Tributary (Section 404 Only) 0.067 1.00

(Continued next page)



Table S10. Sackett divides AJDs into resource types corresponding to different legal
categorizations of waters. (Continued)

Share
Share of  juris-
Definition AJDs  dictional
(1) 2) 3)

(a)(5) Intrastate Lake or Pond not Identified in Paragraphs
(a)(1) through (4), that is a relatively permanent, standing
AS5.INTSTATE.LKPND-404 or continuously flowing body of water (Section 404 Only) 0.0023 1.00

BI-EXCL-WTS (b)(1) Waste Treatment System (Excluded) 0.0088  0.00
(b)(2) Wetland Excluded as Prior Converted Cropland
B2-EXCL-PCC designated by USDA (Excluded) 0.0007 0.00

(b)(3) Ditches (including roadside ditches) excavated
wholly in and draining only dry land and that do not carry a

B3-EXCL-DITCH relatively permanent flow of water (Excluded) 011 0.00
(b)(4) Artificially irrigated areas that would revert to dry

B4-EXCL-ART.IRR land if the irrigation ceased (Excluded) 0.0022 000
(b)(5) Artificial lakes or ponds created in dry land, used

B5-EXCL-ART.LK exclusively for specific purposes (Excluded) 0.031 0.00

(b)(6) Artificial reflecting/swimming/ornamental pools;
created by excavating or diking dry land to retain water for

(b)(7) Waterfilled depressions created in dry land
incidental to construction activity and pits excavated in dry
B7-EXCL-WTF.DEP land, until abandoned (Excluded) 0.012 0.00

(b)(8) Swales and erosional features (e.g., gullies, small
washes) characterized by low volume, infrequent, or short
B8-EXCL-SWAL.EROS duration flow (Excluded) 0.027 0.00

Dry Land - The review area is comprised entirely of dry
land (i.e. there are no aquatic features, including

NON-WOTUS - Intrastate lake or pond not identified in
paragraphs (a)(1 - 4) that is not relatively permanent or
NON-WOTUS-INTSTATE- does not have a continuous surface connection to (a)(1)

LKPND.NEGATIVE.AS or(3water 0015 0.00
NON-WOTUS-INTSTATE- NON-WOTUS - Intrastate stream that does not connect to
STRM.NEGATIVE.A3 a paragraph (a)(1) or (a)(2) water 0.011 0.00

NON-WOTUS - Tributary evaluated under (a)(3) and
determined to not be a relatively permanent water with a
NON-WOTUS- continuous surface connection to paragraph (a)(1) or
TRIB.NEGATIVE.A3 (a)(3) water 0.18 0.00

NON-WOTUS - Wetland that does not have a continuous

surface connection to a paragraph (a)(1) water or to a
NON-WOTUS- relatively permanent paragraph (a)(2) impoundment or
WET.NEGATIVE.A4 paragraph (a)(3) tributary 0.4 0.00

RHA - Non-tidal water is on the district's Section 10
RHA-10NAV waters list (Section 10 Only) 0.0003 1.00




Each row lists a Sackett resource type from the AJD data. Column (1) describes the resource
type, column (2) lists the share of all Sackett AJDs the resource type accounts for, and column
(3) shows the share of the resource type AJDs that are jurisdictional.



Table S11. Rapanos divides AJDs into resource types corresponding to different legal
categorizations of waters.

Share of Share
Definition AJDs jurisdictional
(1) 2) 3)
IMPNDMNT Impoundment of Jurisdictional Waters 0.011 | ort
ISOLATE  Isolated (interstate or intrastate) waters 034 | 0.000025
Non-relatively Permanent Water that flows directly or indirectly
NRPW i into Traditional Navigable Water 0.052 | 063
Wetland Adjacent to Non-relatively Permanent Water that flows
NRPWW ___directly or indirectly into Traditional Navigable Water 0029 | 087
Relatively Permanent Water that flows directly or indirectly into
RPW  Traditional Navigable Water 0.098 100
Wetlands Directly Abutting Relatively Permanent Water that
RPWWD _flows directly or indirectly into Traditional Navigable Water 011 100
Wetlands Adjacent but not Directly Abutting Relatively
Permanent Water that flows directly or indirectly into Traditional
RPWWN  Navigable Water 0.037 | 094
TNW  Traditional Navigable Water 0.032 100
TNWRPW  Traditional Navigable Water - Relatively Permanent Water 0.0007 099
TNWW _ Wetlands Adjacent to Traditional Navigable Water 0038 100
UPLAND Uplands 0.26 0.000064

Each row lists a Rapanos resource type from the AJD data. Column (1) describes the resource
type, column (2) lists the share of all Rapanos AJDs the resource type accounts for, and column
(3) shows the share of the resource type AJDs that are jurisdictional.



Table S12. Tiner (2003) categorizes many types of isolated wetlands.

Geographic Region

(1)

Tiner (2003) Wetland Types
Alvar wetlands Level IV ecoregions 50ab (Cheboygan Lake Plain)
Channeled Scablands wetlands Level IV ecoregion 10a (Channeled Scablands)
Cypressdomes None -- area is too large/no specific agreement
Delmarva pothole wetlands Level IV ecoregion 63f (Delmarvauplands)
Desert spring wetlands Level Ill ecoregions 14 (Mojave Basinand Range)
Fens ... None -- area is too large/no specific agreement
Geysers None -- area is too large/no specific agreement
Inactive floodplain wetlands None -- area is too large/no specific agreement
Interdunal and intradunal wetlands None -- area is too large/no specific agreement
Kettle hole wetlands None -- area is too large/no specific agreement
Mid- and South Atlantic Wetlands Mid- and South Atlantic Wetlands
Naturalponds None -- area is too large/no specific agreement
Playas Level lll ecoregion 25 (High Plains)
Prairie potholes Mann (1974) Prairie Pothole Region
Rainwater basin wetlands Level IV ecoregion 27f (Rainwater Basin Plains)
Rock pool wetlands None -- area is too large/no specific agreement
Salt flats and salt lake wetlands Level lll ecoregions 13 (Central Basin and Range)
Sandhills wetlands Level Ill ecoregion 44 (Nebraska Sand Hills)
Seepage slope wetlands None -- area is too large/no specific agreement
Sinkhole wetlands Level IV ecoregions 69c (Greenbriar Karst), 71e
Tarnwet@ands None -- area is too large/no specific agreement
Volcanic-formed wetlands Level IV ecoregions 1d (Coast Range Volcanics)

Table shows isolated wetland types from Tiner (15). Column (1) shows mapping to geographic
regions.



Table S13. We generate synthetic non-jurisdictional training data within several
categories of isolated wetlands from Tiner (15).

Geographic Region Tiner (15) Wetland Type(s)

() (2)
Cowardin Code

Palustrine emergent persistent wetland, temporarily

PEM1A flooded Playas; prairie potholes

Pf Palustrine wetland, farmed .~~~ Prairie potholes
Palustrine wetland, unconsolidated bottom, semi-

PUBFx permanently flooded, excavated Playas; prairie potholes
Palustrine wetland, unconsolidated bottom, permanently

PUBHx flooded, excavated West Coast vernal pools

Desert spring wetlands; salt flats
R4SBJ Riverine wetland, surface flooding, intermittent and salt lake wetlands

Table shows Cowardin codes (4) selected for non-jurisdictional synthetic training data, by Tiner
(15) wetland type. See Section A.3 under “Synthetic Non-Jurisdictional Data: Isolated
Wetlands.” Column (1) describes associated geographic regions and column (2) lists associated
Tiner wetland types.



Table S14. Optimal thresholds for each metric allow calculation of model performance.

Performance Metrics

MAE
Metric
optimized Threshold AUC F1 Precision Recall Specificity Accuracy US State
(1) 2) 3) (4) (5) (6) (@) (8) 9)
MAE 0173 0.691 0393 0392 0394 0850 | 0.760  0.001 0.153
State
MAE 0242  0.691 0368 0502 0290 0929 | 0803  0.083 0.182
_Accuracy | 0577 0.691 0297 0635 0193 0973 | 0819  0.137  0.205
F1 Score 0.242 0.691 0.368 0.502 0.290 0.929 0.803 0.083 0.182

Table shows ex post deep learning (Sackett) model performance. In each row, we choose the
threshold which maximizes the performance metric indicated. AUC does not depend on
threshold choice so it is identical across cases. Column (1) lists the resulting threshold.
Columns (2)—(9) show all performance metrics. Values in bold show the optimized performance
values. Selection of thresholds in column (1) uses the validation set. Performance metrics in
columns (2)—(9) use the Sackett test set AJDs. MAE is mean absolute error.



Table S$15. Input layers build on the inputs from Table S3 of Greenhill et al. 2025

Dataset Input layer  Variable definition el 2zl . Source
type Resolution
National Redband  Red channel visible light
Agriculture Blue Blue channel visible light
----------------------------------------------------------- Rast 0.6 to 1.0 met 18
Imagery Program  Green Green channel visible light aster SISt ()

NALLR) 'NIR  Nearinfrared light

National Wetlands
Inventory (NWI)

National
Hydrography
Dataset (NHD)
Plus V2

Dimensional
Elevation Program

US EPA
Ecoregions

Wetland
type

Level IV
Ecoregion

NWI wetland types: Estuarine and
Marine Deepwater, Estuarine and
Marine Wetland, Freshwater
Emergent Wetland, Freshwater
Forested/Shrub Wetland,
Freshwater Pond, Lake, Riverine,
Other

Vector

Water feature type (e.g., perennial
stream, intermittent stream,
coastline)

Maximum flow for this water
segment over a sequential 3-month
period, using NHD Value Added
Attributes Enhanced Runoff
Method (EROM) long-term mean
flow estimates for each month.

Vector

Minimum flow for this water
segment over a sequential 3-month
period, using EROM.

Hierarchy of streams from the
source (or headwaters)
downstream

Ecoregions are areas where
ecosystems (and the type, quality,
and quantity of natural resources)
are generally similar. There are 967
level IV ecoregions in the United
States.

Vector

1:250,000

1:100,000

(Continued next page)



Data  Spatial

Dataset Input layer Variable definition . Source
type Resolution
Parameter-
elevation
Regressions on
Independent Precipitation  Average annual total precipitation
Slopes Model
(PRISM) 30-year
Normals
Minimum Daily minimum temperature, averaged
lemperature _ over1990-2021
Maximum Daily maximum temperature,
_temperature  averaged over 1990-2021
Mean Daily mean temperature, averaged
temperature  over 1990-2021
Daily mean dew point temperature
Mean dew (the temperature to which air must be
point cooled to become saturated with
temperature  water vapor), averaged over 1990-
2021
Minimum Minimum VPD (difference between Rasier 4 demeisr (21)
vapor the amount of moisture in the air and
pressure how much moisture the air can hold),
deficit (VPD) averaged over 1990-2021
Maximum Maximum VPD (difference between
vapor the amount of moisture in the air and
pressure how much moisture the air can hold),
deficit (VPD) averaged over 1990-2021
‘Solar Total daily global shortwave solar
radiation radiation received on a horizontal
(clearsky) _surface, averaged over 1990-2021
Solar Total solar radiation incident on a
radiation horizontal surface), averaged over
fotal) leeoter
Atmospheric transmittance
Cloudiness (cloudiness), averaged over 1990-
_________________________________________________ 200
District Each ACE district is assigned a
US Army Corps ~ codes unique value.
Regulato Point  1:250,000 30
Bogﬁdari;{: Distance to We calculate the distance from each I (30)
headquarters point to the district headquarters.

(Continued next page)



Dataset

Input layer

Data
type

Variable definition Spatial

Resolution

Source

Gridded National
Soil Survey
Geographic
Database

Taxonomic

Flooding
frequency

Ponding

The Soil Taxonomy subgroup and
family for a soil.

The annual probability of a flood event

expressed as a class. Raster 30 meters

The number of times ponding occurs

(GNATSGO) frequency over a year

The NLCD has 20 land cover classes:
Open water, ice/snow, four classes of
developed land (open, low, medium,
and high), barren, three forest classes
(evergreen, deciduous, mixed), two
scrub classes (dwarf, shrub), four
herbaceous classes (grassland,
sedge, moss, lichen), two agricultural
classes (pasture/hay, cultivated), and
two wetland classes (woody,
emergent herbaceous)

National Land
Cover Database
(NLCD)

Landcover Raster 30 meters (19)

C-CAP has 25 land cover classes:
background, unclassified, developed
(high intensity), developed (medium
intensity), developed (low intensity),
developed (open space), cultivated
crops, pasture/hay,
grassland/herbaceous, deciduous
forest, evergreen forest, mixed forest,
scrub/shrub, palustrine forested
wetland, palustrine scrub/shrub
wetland, palustrine emergent wetland
(persistent), estuarine forested
wetland, estuarine scrub/shrub
wetland, estuarine emergent wetland,
unconsolidated shore, barren land,
open water, palustrine aquatic bed,
estuarine aquatic bed, tundra,
perennial ice/snow

Coastal Change
Analysis Program
(CCAP)

Landcover Raster 30 meters (23)

(Continued next page)



Data Spatial

type Resolution HeE

Dataset Input layer  Variable definition

Topologically
Integrated
Geographic
Encoding and
Referencing
System
(TIGER)/Line State
boundaries

CWA Approved .
Jurisdictional WOTUS rule Lr\}\r/?:,eRWOTUS e RepEnes, GHIR

Determinations

State codes  Each state is assigned a unique value Vector 1:250,000 (31)




